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Figure 1. Comparing the trade‐off between image quality and computational complexity for LiteSRNet
with other SOTA models. The size of each circle is proportional to the num‐ ber of parameters in the
model.HR Bicubic EDSR

Overview - Problem and Key Contributions

Problem Overview:

Large‐scale Super‐Resolution (SR) models are computationally expensive.
Hard to deploy on resource‐limited devices.
Challenge: How to achieve efficient super‐resolution with fewer parameters?

Contributions:

Developed a lightweight RNN (LiteSRNet) with less than 75k parameters.
Achieved comparable performance to SOTA models with 10x fewer parameters.
Computational efficiency: Only 16.64 GFLOPs vs. SOTA models 53.8 GFLOPs.
High PSNR and SSIM on Set5, Set14, BSD100, Urban100.

Methodology - LiteSRNet Architecture
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Figure 2. Recurrent Neural Network (RNN) based Single Image Super‐resolution (SISR) model: LiteSRNet.

We extract features from 48×48 patches PLR ∈ R(3×H×W ) cropped from original images,
producing a 64‐channel feature map for the recurrent block.
Algorithm 1 RNN‐based SISR model (LiteSRNet)
Require: F2 ∈ R(64×H×W ), N , Sf

Ensure: Frec ∈ R(64×H×W )

1: F ← ∅
2: Frec← F2
3: for i = 1 to N do
4: Frec← Conv2D(Frec)
5: Frec← ReLU(Frec)
6: for j = 1 to ⌊Sf

2 ⌋ do
7: Fdec← TransposeConv2D(Frec)
8: Fdec← ReLU(Fdec)
9: end for
10: Fdec← Conv2D(Fdec)
11: F ← F ∪ Fdec
12: end for
13: return F [−1]

Loss Function: The final loss combines two terms:
L = MSE(PSR, PHR) + α · Perceptual(PSR, PHR)

MSE Loss: Minimizes pixel‐level differences between super‐resolved and
high‐resolution images.
Perceptual Loss: Ensures high‐level feature matching using pre‐trained VGG16.

Results - Performance Comparison
Table 1. Quantitative comparison of our proposed model with other SOTA models. DIV2K+F2k is the combination of DIV2K
and Flickr2K [1]. DIV2K+291 is the combination of DIV2K and 291 [21, 22] images. The best results are highlighted in blue
and the second-best results are highlighted in red.

Method Training
Dataset Scale No. of

Params
Set5 Set14 BSD100 Urban100

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
EDSR-baseline DIV2K 1,370k 37.99 0.9604 33.57 0.9175 32.16 0.8994 31.98 0.9272
RFDN-L DIV2K 626k 38.08 0.9606 33.67 0.9190 32. 18 0.8996 32.24 0.9290
SRPN-Lite DIV2K 609k 38.10 0.9608 33.70 0.9189 32.25 0.9005 32.26 0.9294
HNCT DIV2K ×2 357k 38.08 0.9608 33.65 0.9182 32.22 0.9001 32.22 0.9294
FMEN DIV2K+F2K 748k 38.10 0.9609 33.75 0.9192 32.26 0.9007 32.41 0.9311
NGswin DIV2K 998k 38.05 0.9610 33.79 0.9199 32.27 0.9008 32.53 0.9324
CAMixerSR DIV2K+F2K 746K 38.28 0.9614 34.04 0.9218 32.37 0.9021 33.04 0.9364
LiteSRNet (Ours) DIV2K 67k 38.04 0.9605 33.70 0.9185 32.24 0.8996 32.40 0.9294
EDSR-baseline DIV2K l,555K 34.37 0.9270 30.28 0.8417 29.09 0.8052 28.15 0.8527
RFDN-L DIV2K 633K 34.47 0.9280 30.35 0.8421 29.11 0.8053 28.32 0.8547
SRPN-Lite DIV2K 615K 34.47 0.9276 30.38 0.8425 29.16 0.8061 28.22 0.8534
HNCT DIV2K ×3 363K 34.47 0.9275 30.44 0.8439 29.15 0.8067 28.28 0.8557
FMEN DIV2K+F2K 757K 34.45 0.9275 30.40 0.8435 29.17 0.8063 28.33 0.8562
NGswin DIV2K 1,007K 34.52 0.9282 30.53 0.8456 29.19 0.8078 28.52 0.8603
CAMixerSR DIV2K+F2K - - - - - - - - -
LiteSRNet (Ours) DIV2K 68k 34.44 0.9278 30.36 0.8421 29.11 0.8052 28.30 0.8545
EDSR-baseline DIV2K l,518K 32.09 0.8938 28.58 0.7813 27.57 0.7357 26.04 0.7849
RFDN-L DIV2K 643K 32.28 0.8957 28.61 0.7818 27.58 0.7363 26.20 0.7883
SRPN-Lite DIV2K 623K 32.24 0.8958 28.69 0.7836 27.63 0.7373 26.16 0.7875
HNCT DIV2K ×4 373K 32.31 0.8957 28.71 0.7834 27.63 0.7381 26.20 0.7896
FMEN DIV2K+F2K 769K 32.24 0.8955 28.70 0.7839 27.63 0.7379 26.28 0.7908
NGswin DIV2K 1,019K 32.33 0.8963 28.78 0.7859 27.66 0.7396 26.45 0.7963
CAMixerSR DIV2K+F2K 765K 32.60 0.9003 28.91 0.7889 27.78 0.7434 26.80 0.8068
LiteSRNet (Ours) DIV2K 75k 32.20 0.8943 28.70 0.7836 27.63 0.7375 26.32 0.7885

Table 1. Quantitative comparison of our proposed model with other SOTA models. DIV2K+F2k is the combination of
DIV2K and Flickr2K [1]. DIV2K+291 is the combination of DIV2K and 291 [21, 22] images. The best results are
highlighted in blue and the second‐best results are highlighted in red.
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Figure 3. t‐SNE visualizations of representations from the fine‐tuned encoders of (a) BYOL, (b) SimCLR, and (c)
Supervised G‐CNN. Blue points denote FRI class, and orange for FRII. Improved clustering in our models, indicated by
Silhouette and Davies Bouldin scores.

Ablation Study - Effect of Recurrent Block Depth

Table 1. Quantitative comparison of our proposed model with other SOTA models. DIV2K+F2k is the combination of DIV2K
and Flickr2K [1]. DIV2K+291 is the combination of DIV2K and 291 [21, 22] images. The best results are highlighted in blue
and the second-best results are highlighted in red.

Method Training
Dataset Scale No. of

Params
Set5 Set14 BSD100 Urban100

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
EDSR-baseline [1] DIV2K 1,370k 37.99 0.9604 33.57 0.9175 32.16 0.8994 31.98 0.9272
MemNet [15] 291 677k 37.78 0.9597 33.28 0.9142 32.08 0.8978 31.31 0.9195
DRRN [8] DIV2K 297K 37.74 0.9591 33.23 0.9136 32.05 0.8973 31.23 0.9188
CARN [16] DIV2K+291 1,592k 37.76 0.9590 33.52 0.9166 32.09 0.8978 31.92 0.9256
RFDN-L [18] DIV2K 626k 38.08 0.9606 33.67 0.9190 32. 18 0.8996 32.24 0.9290
SRPN-Lite [5] DIV2K 609k 38.10 0.9608 33.70 0.9189 32.25 0.9005 32.26 0.9294
HNCT [2] DIV2K 357k 38.08 0.9608 33.65 0.9182 32.22 0.9001 32.22 0.9294
FMEN [19] DIV2K+F2K 748k 38.10 0.9609 33.75 0.9192 32.26 0.9007 32.41 0.9311
NGswin [3] DIV2K 998k 38.05 0.9610 33.79 0.9199 32.27 0.9008 32.53 0.9324
CAMixerSR [9] DIV2K+F2K 746K 38.28 0.9614 34.04 0.9218 32.37 0.9021 33.04 0.9364
LiteSRNet (Ours) DIV2K 67k 38.04 0.9605 33.70 0.9185 32.24 0.8996 32.40 0.9294
EDSR-baseline [1] DIV2K l,555K 34.37 0.9270 30.28 0.8417 29.09 0.8052 28.15 0.8527
MemNet [15] 291 677K 34.09 0.9248 30.00 0.8350 28.96 0.8001 27.56 0.8376
DRRN [8] DIV2K 297K 34.03 0.9244 29.96 0.8349 28.95 0.8004 27.53 0.8378
CARN [16] DIV2K+291 l,592K 34.29 0.9255 30.29 0.8407 29.06 0.8034 28.06 0.8493
RFDN-L [18] DIV2K 633K 34.47 0.9280 30.35 0.8421 29.11 0.8053 28.32 0.8547
SRPN-Lite [5] DIV2K 615K 34.47 0.9276 30.38 0.8425 29.16 0.8061 28.22 0.8534
HNCT [2] DIV2K 363K 34.47 0.9275 30.44 0.8439 29.15 0.8067 28.28 0.8557
FMEN [19] DIV2K+F2K 757K 34.45 0.9275 30.40 0.8435 29.17 0.8063 28.33 0.8562
NGswin [3] DIV2K 1,007K 34.52 0.9282 30.53 0.8456 29.19 0.8078 28.52 0.8603
CAMixerSR [9] DIV2K+F2K - - - - - - - - -
LiteSRNet (Ours) DIV2K 68k 34.44 0.9278 30.36 0.8421 29.11 0.8052 28.30 0.8545
EDSR-baseline [1] DIV2K l,518K 32.09 0.8938 28.58 0.7813 27.57 0.7357 26.04 0.7849
MemNet [15] 291 677K 31.74 0.8893 28.26 0.7723 27.40 0.7281 25.50 0.7630
DRRN [8] DIV2K 297K 31.68 0.8888 28.21 0.7720 27.38 0.7284 25.44 0.7638
CARN [16] DIV2K+291 l,592K 32.13 0.8937 28.60 0.7806 27.58 0.7349 26.07 0.7837
RFDN-L [18] DIV2K 643K 32.28 0.8957 28.61 0.7818 27.58 0.7363 26.20 0.7883
SRPN-Lite [5] DIV2K 623K 32.24 0.8958 28.69 0.7836 27.63 0.7373 26.16 0.7875
HNCT [2] DIV2K 373K 32.31 0.8957 28.71 0.7834 27.63 0.7381 26.20 0.7896
FMEN [19] DIV2K+F2K 769K 32.24 0.8955 28.70 0.7839 27.63 0.7379 26.28 0.7908
NGswin [3] DIV2K 1,019K 32.33 0.8963 28.78 0.7859 27.66 0.7396 26.45 0.7963
CAMixerSR [9] DIV2K+F2K 765K 32.60 0.9003 28.91 0.7889 27.78 0.7434 26.80 0.8068
LiteSRNet (Ours) DIV2K 75k 32.20 0.8943 28.70 0.7836 27.63 0.7375 26.32 0.7885

and NGswin [3] exhibit almost identical PSNR and SSIM
values (24.18 dB, 0.7997 vs. 24.33 dB, 0.8115). This under-
scores our model’s consistent ability to generate high-quality
super-resolution images.

4.4. Ablation Study

To understand the impact of the recurrent block’s depth on the
model’s performance, we conducted an ablation study. We
trained our model with depths of 13, 16, and 19 and evaluated
on the Set5 dataset at ×2, ×3, and ×4 upscaling. The ratio-
nale behind these depths drew inspiration from the architec-
ture of VGG nets, specifically VGG13, VGG16, and VGG19.
Our best model had a depth of 19.

Table 2 shows the performance comparison for the differ-

Table 2. Comparing image quality metrics for LiteSRNet
with varied depths, evaluated on the Set5 dataset.

Scale Factor Model Depth PSNR SSIM

×2
13 37.11 0.9565
16 37.88 0.9598
19 38.04 0.9605

×3
13 33.90 0.9232
16 34.08 0.9247
19 34.44 0.9278

×4
13 30.00 0.8565
16 31.34 0.8785
19 32.20 0.8943

Table 2. Comparing image quality metrics for LiteSRNet
with varied depths, evaluated on the Set5 dataset.

Table 3. Comparing computational complexity and inference
time for LiteSRNet with varied depths.

Scale
Factor

Model
Depth

Multi-
Adds (G)

Memory
Footprint (M)

Inference
Time (s)

×2
13 20.02 2.10 0.31
16 29.29 2.10 0.46
19 38.57 2.10 0.59

×3
13 11.49 1.05 0.14
16 16.90 1.05 0.22
19 22.32 1.05 0.28

×4
13 7.76 0.71 0.15
16 12.20 0.71 0.24
19 16.64 0.71 0.33

ent depths of the recurrent block. The results demonstrate that
a deeper recurrent block consistently yields better image qual-
ity, as measured by PSNR and SSIM values. For instance, at
×2 upscaling, the model with a depth of 19 achieved a PSNR
of 38.04 and an SSIM of 0.9605, while the model with a depth
of 13 achieved a PSNR of 37.11 and an SSIM of 0.9565. Sim-
ilarly, at ×3 and ×4 upscaling, the model with a depth of 19
achieved better PSNR and SSIM values than the model with a
depth of 13. This demonstrates that a deeper recurrent block
consistently yields better image quality.

However, it’s important to note that a deeper recurrent
block also comes with longer inference times and higher com-
putational complexity, as shown in Table 3. For example, at
×2 upscaling, the model with a depth of 19 took 0.59 seconds
to upscale a single 4k image, while the model with a depth of
13 took only 0.31 seconds. Similarly, the model with a depth
of 19 took longer to upscale an image than the model with a
depth of 13 at both ×3 and ×4 upscaling. The same trend is
observed in computational complexity, where a deeper recur-
rent block requires higher computational complexity.

The computational complexity and memory footprint vary
with different scales, as shown in Table 3. For instance, at×2
upscaling, the model with a depth of 19 has 38.57G Multi-
Adds, and 2.10 MB memory footprint, while the same model
at ×3 upscaling has 22.32G Multi-Adds, and 1.05 MB mem-
ory footprint. This is because of the different sizes of the
input and output images. The computational complexity and
memory footprint are higher for larger images.

We visually compared outputs with different depths of the
recurrent block during ×4 upscaling at inference (Figure 4),
trained with a depth of 19. Notably, artifacts appeared at
depths 4 and 7, while visually appealing results started emerg-
ing at depths 10. This is further clarified by the PSNR values:
18.04, 22.81, 32.06, 32.28, 32.56, and 32.93, respectively, for
depths 4, 7, 10, 13, 16, and 19. An open question remains
regarding how the depth of the recurrent block, given shared
weights, influences the model’s performance at inference—a
promising direction for future research.

Based on the findings, we can conclude that deeper recur-
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Fig. 4. Visual comparison of outputs with varying recurrent
block depths in ×4 up-scaling during inference.

rent blocks consistently lead to better image quality, which is
indicated by higher values of PSNR and SSIM. However, this
improvement comes at the expense of longer inference times
and more computational complexity, which highlights a trade-
off between image quality and computational efficiency. On
the other hand, shallow recurrent blocks may not offer the
same level of image quality, but they have shorter inference
times and lower computational complexity.

5. CONCLUSION

In conclusion, our RNN-based SISR model balances com-
putational efficiency and performance, achieving commend-
able results with fewer parameters. The depth of the recurrent
block is crucial for performance, with deeper blocks improv-
ing quality but increasing inference time, showing a trade-
off. Our work demonstrates high performance, efficiency, and
adaptability. Future research should explore advanced opti-
mization techniques and real-world deployment to validate
robustness and versatility.
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Figure 4. Visual comparison of outputs by our model and other SOTA models at ×4 upscaling. Our model consistently
generates visually appealing images, comparable to others.
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