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Abstract

Continual Test-Time Adaptation (CTTA) is cru-
cial for deploying models in real-world applica-
tions with unseen, evolving target domains. Exist-
ing CTTA methods, however, often rely on source
data or prototypes, limiting their applicability in
privacy-sensitive and resource-constrained settings.
Additionally, these methods suffer from long-term
forgetting, which degrades performance on previ-
ously encountered domains as target domains shift.
To address these challenges, we propose SloMo-
Fast, a source-free, dual-teacher CTTA framework
designed for enhanced adaptability and general-
ization. It includes two complementary teach-
ers: the Slow-Teacher, which exhibits slow for-
getting and retains long-term knowledge of previ-
ously encountered domains to ensure robust gen-
eralization, and the Fast-Teacher rapidly adapts to
new domains while accumulating and integrating
knowledge across them. This framework efficiently
preserves knowledge of past domains, adapts effi-
ciently to new ones. Our extensive experimental
results demonstrate that SloMo-Fast consistently
outperforms state-of-the-art methods across CTTA
benchmarks, achieving a mean error rate of 33.8%
in various TTA settings. Notably, it surpasses exist-
ing methods by a margin of at least 1.5%. Addition-
ally, SloMo-Fast achieves significant performance
improvements in Mixed Domain and our proposed
new benchmark Mixed domain comes after Contin-
ual Domain scenarios along with Cyclic repeatation
in continual test time adaptation setting, indicat-
ing its ability to learn generalized representations
across domains.

1 Introduction

Adapting models to changing environments is crucial for de-
ploying autonomous systems in real-world scenarios. Con-
tinual Test-Time Adaptation (CTTA) has emerged as a key

*Corresponding author: iftee1807002@gmail.com
TWork does not relate to position at Amazon.

Our Approach

/ Existing Research Approach\

Learning

_ ——®
P

1
Feature Feature
Extractor Extractor

Bujuiea
aAseUOD

Contrastive

- ™\
[Classifer |

I
Feature
Extractor

L
—>

I~

AN J /
1 EMA j A
Student Student
' Consistency | | Consi |
L h
Domain ! Loss ‘ Domain - _ - =°%° _ _| Domain

Generalized Output Adapted Output

,,,,,,,,,
\Ad\apted Output /

Figure 1: Overview of CTTA approaches with teacher-student mod-
els and contrastive learning. SloMo-Fast (on the right) integrates a
second teacher model and dynamically generates prototypes at test
time without requiring source data.

research area, addressing the need for models to adapt con-
tinuously to changing and previously unseen domains. This
capability is particularly significant in fields like autonomous
driving, healthcare, and robotics, where systems must operate
effectively under evolving conditions without prior knowl-
edge of these changes [Wang et al., 2024; Karani ef al., 2021].

Test-Time Adaptation (TTA) methods such as TENT
[Wang er al., 2021], MEMO [Zhang ef al., 2022], and EATA
[Niu er al., 2022] focus on adapting models to a single do-
main. In contrast, CTTA is designed to handle sequences of
domains over time, making it suitable for applications like
self-driving cars, where weather, lighting, and road condi-
tions change unpredictably [Liu ef al., 2020].

Recent works on CTTA face challenges in achieving prac-
tical, effective adaptation for real-world applications. Models
must adapt efficiently to evolving, source-free data streams
while retaining source domain knowledge. Robust general-
ization is crucial to prevent forgetting earlier domains, as test-
time conditions may reoccur. Many methods rely on pseudo-
labeling in teacher-student frameworks, making the accuracy
and reliability of pseudo-labels vital. Overcoming these chal-
lenges is essential for realizing the full potential of CTTA in
real-world scenarios.

To address key CTTA challenges, some methods (e.g.,
RMT [Débler et al., 2023] and DPLOT [Yu ef al., 2024])
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utilize source prototypes or stored representations from the
source domain to guide model adaptation at test time. These
prototypes help retain domain-specific features, improving
the model’s performance with target domain shifts. How-
ever, in real-world applications, access to source data or pro-
totypes is often restricted due to privacy concerns [Karani et
al., 2021], storage limitations, or practical constraints related
to data transmission and memory capacity [Wang er al., 2024;
Niu et al., 2022], which limits the applicability of these meth-
ods in privacy-sensitive settings such as healthcare.

In fully source-free settings, some methods aim to prevent
catastrophic forgetting of the source domain. For example,
CoTTA [Wang et al., 2022] introduces stochastic restoration
of the source model to mitigate error accumulation, which
can otherwise result in the loss of learned knowledge from
previously encountered domains. Other recent works, such
as ROID [Marsden et al., 2024al, continuously ensemble pa-
rameters from both the source and target models to retain
information from past domains. While effective in some
continual settings, this approach does not explicitly handle
real-world CTTA scenarios involving cyclic domain arrivals,
where domains may repeat over time, such as in autonomous
driving or UAV applications where weather patterns can re-
cur. Additionally, most CTTA models are not evaluated un-
der conditions where new data from previously seen domains
may arrive out of sequence, which is a common scenario in
real applications.

Finally, the performance of self-training-based teacher-
student CTTA methods [Wang et al., 2022; Yuan et al., 2023;
Yu et al., 2024] relies heavily on the quality of pseudo-labels
produced by the teacher model. Although state-of-the-art
self-training methods have shown promise they are suscep-
tible to noisy pseudo-labels. High-entropy samples can pro-
duce noisy gradients, potentially disrupting model adaptation
in continual settings. Moreover, when adapting to long se-
quences of domains, models can develop biases [Marsden et
al., 2024a]. To address these issues, [Marsden et al., 2024al
employs diversity and certainty-based weighting. However,
generating robust pseudo-labels remains an open challenge
for teacher-student-based CTTA architectures.

To address the challenges, we propose SloMo-Fast, a dual-
teacher, one-student framework, that eliminates the need for
source data while enhancing adaptability and generalization
Figure 2. SloMo-Fast employs two teachers: the Fast-Teacher
(T1), which adapts quickly to new domains, and the Slow-
Teacher (7T,), which adapts gradually to ensure robust gen-
eralization. Unlike existing methods, our framework updates
models solely through batch normalization, significantly re-
ducing computational complexity. A key novelty is using
class-wise prototypes to capture entropy-based confident fea-
ture representations across domains, which are then used to
refine the Slow-Teacher through contrastive learning. To
maintain generalization during prolonged exposure to a sin-
gle domain, the Slow-Teacher’s weights are periodically re-
stored from the source model. This dual-teacher design en-
ables effective adaptation to current domains while preserv-
ing knowledge of previously encountered ones, ensuring reli-
able pseudo-labels and robust performance in dynamic, con-
tinually evolving real-world environments.

Our extensive experimental results demonstrate that
SloMo-Fast consistently outperforms state-of-the-art meth-
ods across various CTTA benchmarks, including Contin-
ual, Mixed, Gradual, Episodic, Cyclic, Cross-Group, Easy-
to-Hard, Hard-to-Easy, Mixed After Continual, and Con-
tinual After Mixed. Across five datasets—CIFARI10-C,
CIFAR100-C, ImageNet-C, ImageNet-R, and ImageNet-
Sketch—SloMo-Fast achieves remarkable performance. For
instance, in the Continual setting, it achieves error rates of
14.8% on CIFAR10-C and 27.9% on CIFAR100-C, outper-
forming ROID (16.1% and 29.3%, respectively). In the Grad-
ual setting, it achieves 8.9% on CIFAR10-C and 23.3% on
CIFAR100-C, surpassing ROID (10.4% and 24.3%). On
ImageNet-C, it achieves an error rate of 54.2% in the Con-
tinual setting, demonstrating its robustness and adaptability
across diverse benchmarks and datasets. Our results estab-
lish SloMo-Fast as a state-of-the-art CTTA framework that
effectively adapts to a wide range of real-world settings and
scenarios.

The key contributions of our work are as follows:

* We propose SloMo-Fast, a novel dual-teacher CTTA
framework that eliminates the need for source data while
enhancing adaptability and generalization. The Fast-
Teacher (7)) adapts quickly to new domains, while
the Slow-Teacher (75) ensures robust generalization by
adapting gradually.

SloMo-Fast solely uses batch normalization to update
parameters, thus significantly reducing computational
complexity.

We introduce a novel entropy-aware prototype prioriti-
zation approach to refine the Slow-Teacher for learning
generalized representations across domains. The proto-
types are generated dynamically at test time without re-
quiring source data.

We propose a novel TTA setting, Cyclic Domain Arrival,
where domains can repeat over time, as a new bench-
mark for evaluating CTTA methods.

2 Related Works

2.1 Test-time Adaptation (TTA)

TENT [Wang et al., 2021] introduced entropy minimization
for test-time adaptation, enabling domain adaptation without
source data. MEMO [Zhang e al., 2022] added test-time aug-
mentations to improve generalization. AdaContrast [Chen ef
al., 2022] focused on contrastive learning to maintain con-
sistency in the target domain, refining pseudo-labels. EATA
[Niu et al., 2022] introduced entropy-based sample selection
and used elastic weight consolidation (EWC) to avoid catas-
trophic forgetting. SAR [Niu ez al., 2023] addressed stability
in online updates during test-time adaptation.

2.2 Continual Test-Time Adaptation (CTTA)

CoTTA [Wang et al., 2022] used a teacher-student frame-
work for continual adaptation in non-stationary environ-
ments. EcoTTA [Song er al., 2023] leveraged meta-networks
and self-distilled regularization for memory-efficient adapta-
tion. RoTTA [Yuan et al., 2023] introduced a time-aware



reweighting strategy to handle sample uncertainty. DeYo
[Lee et al., 2024b] proposed a new confidence metric for
sample selection. DPLOT [Yu et al., 2024] focused on fine-
tuning specific parts of the network during adaptation. CMF
[Lee and Chang, 2024] and BECoTTA [Lee et al., 2024a] in-
troduced methods to prevent catastrophic forgetting and cap-
ture domain-specific knowledge, respectively. VIDA [Liu et
al., 2024] balanced adaptability and forgetting using high and
low-rank adapters. PSMT [Tian and Lyu, 2024] selectively
updates certain network parameters to prevent overfitting.

2.3 CTTA with Gradual/Mixed Settings

RMT [Dobler et al., 2023] addressed gradual domain shifts
using contrastive learning. GTTA [Marsden et al., 2024b]
created intermediate domains via mixup and style transfer for
gradual and abrupt shifts. ROID [Marsden et al., 2024a] in-
troduced a universal test-time adaptation approach that incor-
porates weight ensembling, diversity weighting, and adaptive
prior correction to improve robustness and prevent forgetting.

3 Methodology

3.1 Overview

We consider the task of adapting a pre-trained model to per-
form effectively in a continuously evolving target domain.
The initial model, denoted as fp, with parameters 6y, is
trained on a source dataset (X°,Y®). Our objective is to
enhance this model’s performance during inference in a dy-
namic environment, where data distributions change over
time, without access to the source data. At each time step
t, the model receives new target data x; and generates a
prediction fp, (z). Simultaneously, it adapts its parame-
ters §; — 6441 to improve performance on subsequent data
points. The model is evaluated based on its real-time predic-
tions under this shifting distribution.

Fig. 2 provides an overview of our method, which incor-
porates two teacher models and a student model. All models
share the same architecture, comprising a feature extractor
and a classifier, and are initialized with the same pre-trained
weights 6y. They differ in their update strategies. The stu-
dent model S, with weights g, is updated using symmet-
ric cross-entropy and differential losses, leveraging pseudo-
labels from both teacher models. The fast-teacher model, 77,
updates its weights f7, using an exponential moving aver-
age (EMA) of the student’s weights, smoothing the student’s
learning process. The slow-teacher model, 75, initially up-
dates its weights 07, by optimizing contrastive loss, mean
squared error (MSE) loss, and information maximization loss
to learn domain-invariant features. Subsequently, its parame-
ters are updated via EMA of the student model at each time
step. This dual-teacher framework offers complementary su-
pervision, enhancing adaptation and stability across shifting
distributions.

3.2 Self-training with Dual Teacher

For an incoming test sample x; at time step ¢, the student
model S aims to minimize the discrepancy between its own
predictions and those generated by the teacher models 7} and

T5,. Rather than using the standard cross-entropy for discrep-
ancy minimization, we use symmetric cross-entropy[Wang et
al., 2019b], which was originally proposed to address noisy
labels and has been shown to exhibit better gradient proper-
ties compared to standard cross-entropy[Débler et al., 2023].
For two distributions p and ¢, the symmetric cross-entropy is
defined as:

C

—- Y

c=1

c
Lsce(p.q) )logg(c) — Y qlc)logp(c) (1)
c=1

where C' is the number of classes, p(c) and ¢(c) represents
the probability of class ¢ under distribution p and g, respec-
tively. The training objective for the student model S, lever-
aging predictions from teacher models 7} and 75, results in
the following self-training loss:

Lst(xt) =Lscr(fos (@), for, (x1))+

Lscr(fos(xt), for, (T1)) (2)

After updating the student model S using Lgs7, the param-
eters of the teacher model 77 are updated through EMA as
follows:

9t+1

= aby, + (1 - )05 (3)

Here, « is a smoothing factor.

3.3 Domain Generalized (75) Model Training

Entropy-based Feature Selection: During adaptation, fea-
ture representations of incoming test samples from 7} are
stored in a fixed-size priority queue for each class, using
pseudo labels to assign class membership. The pseudo label
for a test sample z; is defined as:

g7, = arg max yr, (c) )

where yr, (¢) is the prediction for the c-th class from 7}. Each
class-specific priority queue stores features and their associ-
ated entropy values, prioritizing features with lower entropy
to retain high-confidence representations. Prediction entropy
is computed as:

H(yr,) Z yr, (¢

where C' is the number of classes. Periodically, features
with the lowest entropy are removed, enabling diverse,
cross-domain representations in the queue. This ensures
robust prototype construction. Further details are in the
supplementary materials.

c)log(yr, (c)) ®)

Prototype Generation: We generate class prototypes
using confident feature representations stored in the priority
queue. Prototypes are computed as a weighted average,
where the weight is the inverse of entropy, normalized for
consistency. This ensures more confident features contribute
more to the prototype. For class ¢, the prototype P, is
calculated as:
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Figure 2: The SloMo-FAST framework comprises a dual-teacher and student model. The fast teacher 7' quickly adapts to the current domain
by taking the exponential moving average of the student. Confident feature vectors from 7} are used to construct robust class prototypes via
a priority queue, which refine the slow teacher 75 through contrastive learning. This enables 7% to learn domain-invariant representations

while preserving knowledge from previous domains.
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Contrastive Learning with Class Prototype: Contrastive
learning with class prototypes enables domain-generalized
feature learning by aligning samples from the same class
across domains to a shared prototype while separating sam-
ples from different classes. During test time, we update the
priority queue with features from the teacher model 73 for the
current batch X; and recompute class prototypes using Equa-
tion (6). We select samples where 77 is confident but 75 is
not, ensuring 75 focuses on learning from these samples. A
binary variable n; determines whether the i-th sample’s fea-
tures are included for training 75:

ni = 1My < o) L[H (YY) > o] (7

where ’H( ) and 7—[( ) are the entropy values of predic-
tions from T1 and T5. The selected features form the set:

S = {si|n; = 1}, (8

where s; is the feature representation from 75 for the ¢-th
sample. For each feature in S, we compute the cosine sim-
ilarity with all class prototypes and select the nearest proto-
type to form a positive pair. To ensure invariance to input
changes, we include the test sample’s augmented view, re-
sulting in a batch size of 3V, where N is the size of S. Each
batch consists of original features, augmented views, and pro-
totypes. Fori € I := {1,...,3N}, let A(x) := I\ {i}
and V (i) represent different views of sample i. Following
[Dobler et al., 20231, we use a non-linear projection layer to
obtain z = PI‘Q]( i)- The contrastive loss is defined as:

Lec==) D log (Z &P (Sim(z.i’ Zv)./T) )

i€l veV (i) acA(i) P (sim(zi, za)/7)
. ©))
where 7 is the temperature, and sim(u,v) = T 18 the
cosine similarity.

Feature Alignment with MSE Loss: To further encourage
the 75 model to learn domain-generalized features, we ap-
ply an MSE loss that aligns sample features with class pro-
totypes. This reduces domain-specific noise by emphasiz-
ing class-specific characteristics. The MSE loss for each test
sample compares its feature representation z; from 75 with
the corresponding class prototype P@ﬁ :

N
1
i=1

where N is the number of test samples, and ;Qfl is the pseudo-
label for sample z¢ as defined in Equation (4).

Information Maximization Loss: To ensure 75 provides
strong guidance to the student model .S, it must maintain
both discriminability and diversity in its predictions. Follow-
ing state-of-the-art unsupervised domain adaptation methods
[Liang et al., 2020; Li et al., 2022], we use an information
maximization loss, Ly, comprising two components:

C

Liv = ~Esex, Y yr(e) log(yrn, (¢ Z ) log(q(c)),

c=1 c=1
(1D
where the first term enhances individual prediction certainty,
and the second term promotes variation across class distribu-
tions.



The overall training objective for the teacher model 75 is
defined as follows:

Lra = Aaler + AmseLmsE + AimLiv (12)

where A\, Amse, and Ay, represent the weighting factors for
the contrastive loss, the MSE loss, and the information maxi-
mization loss, respectively.

To address error accumulation from distribution shifts, we
use a stochastic restoration method [Wang et al., 2022] that
combines the pretrained source model’s original weights with
updated weights after each gradient step. This approach miti-
gates catastrophic forgetting by selectively restoring weights,
preserving knowledge from the source model.

Algorithm 1 Entropy-based Feature Selection (Optimized)

1: Input: test samples X;, teacher model T}, entropy
threshold o, time interval p, max queue size K
Output: Updated priority queues for each class
Initialize priority queue (). for each class ¢ with size K
for each test sample x; do
Predict class ¢, entropy H:, and feature z; from
T1 (J) t)
6: if ¢ mod p = 0 then Remove the element with
min H from Q.. for each ¢

7: end if
8: if H; < o then
9: if Q. is full and H; < max H in Q. then Replace
the element with max H by (z;, Hy)
10: else if Q. is not full then Insert (z;, H;) into Q.
11: end if
12: end if
13: end for

3.4 Prediction Ensembling

Inspired by [Débler et al., 20231, we combine the outputs of
both the student and 75 models. The student model adapts
quickly to the current domain, while the 75 model provides
generalized predictions across domains. This combination
leverages their complementary strengths, improving predic-
tion robustness and accuracy in dynamic environments. For a
test sample z;, the final prediction is:

Yt = fos (1) + for, (z¢) (13)

Prior Correction: In continual test-time adaptation, the

learned posterior ¢(y|x) may deviate from the true posterior

p(y|z) due to domain shifts, causing performance degrada-

tion [Marsden et al., 2024a]. To address this in the dual-

teacher setting, we adapt the prior correction strategy from

[Royer and Lampert, 2015], re-scaling the learned posterior
as: W)
by

T) = T)—==. 14

pyle) = q(yl )q(y) (14)

The true class prior p(y) is estimated as the sample mean

of the current batch’s softmax outputs, p;, assuming a near-

uniform learned prior due to the information loss objective in

equation (11). To mitigate the impact of limited batch sizes,
we apply adaptive smoothing [Marsden et al., 2024al:

P+

=TT 15
1+ AN, (15)

Dt

where 7 is the smoothing factor and V. the number of classes.
4 Result and Discussion

This section provides a detailed analysis of the experimen-
tal findings on multiple datasets under various continual test-
time adaptation (CTTA) settings. We evaluate the perfor-
mance of the proposed method across different scenarios,
compare it with baseline approaches, and discuss its robust-
ness and adaptability.

4.1 Implementation Details

We evaluate our approach on diverse domain shifts, includ-
ing artificial corruptions and natural variations. Following
[Marsden et al., 2024al, we use the corruption benchmark
on CIFAR10-C, CIFAR100-C, and ImageNet-C [Hendrycks
and Dietterich, 2019], which apply 15 corruption types at
five severity levels. Additionally, we assess our method on
ImageNet-R [Hendrycks et al., 2021] and ImageNet-Sketch
[Wang ef al., 2019a]. We use priority queue size 10, and
batch size 200 for CIFAR10-C and CIFAR100-C, and 64 for
ImageNet-C, ImageNet-R, ImageNet-Sketch.

4.2 Result for Different TTA Setting

The proposed SloMo-Fast framework consistently delivers
state-of-the-art performance across a wide range of Test-
Time Adaptation (TTA) settings, demonstrating its robust-
ness and adaptability to diverse distribution shifts. In the
Continual Setting, where models face sequentially evolving
shifts, SloMo-Fast* (all parameters updated in student model)
achieves the best results on CIFAR10-C (14.8+£0.07%)
and CIFAR100-C (27.940.12%), significantly outperform-
ing the second-best method SloMo-Fast (only batch nor-
malization layers updates in student model), which achieves
16.1£0.09% and 29.3%, respectively. On the more com-
plex ImageNet-C, SloMo-Fast achieves an error rate of
54.240.10%, nearly matching ROID (54.5%) and outper-
forming CoTTA (76.0%) by a substantial margin. Similarly,
on ImageNet-R and ImageNet-Sketch, SloMo-Fast achieves
50.440.07% and 64.14+0.21%, respectively, outperforming
all other methods. In mixed domain settings, where data from
different corruption came in a mixed manner, SloMo-Fast
also achieves better in CIFAR10-C (28.0%) and CIFAR100-C
(33.5%). These results highlight its robustness across datasets
of varying complexity and resolution.

In the Gradual Setting, characterized by slow and pre-
dictable changes in data distribution, SloMo-Fast* signif-
icantly reduces error rates. On CIFARI0-C, it achieves
8.9+0.09%, outperforming the next-best methods, SloMo-
Fast (10.4%0.11%), Roid (10.5%), by a notable margin. Sim-
ilarly, on CIFAR100-C, the method achieves 23.3+0.33%,
again surpassing ROID (24.3%) and CoTTA (27.0%). On
ImageNet-C, SloMo-Fast achieves an exceptional error rate
of 38.8%, marginally better than ROID (39.14+0.06%) and
significantly outperforming CoTTA (67.7%). This result



Setting Dataset Source TENT-cont. RoTTA CoTTA ROID SloMo-Fast \ SloMo-Fast*
CIFAR10-C 435 20.0 19.3 16.5 162 16.140.09 | 14.840.07

CIFAR100-C 46.4 62.2 34.8 328 293 29.9+0.11 | 27.9+0.12

Continual ImageNet-C 82.0 82.5 78.1 760 545  54.240.10 | 52.8+0.23
ImageNet-R 63.8 57.6 60.7 574 512 53.54£0.05 | 50.4+0.07

ImageNet-Sketch ~ 75.9 69.5 70.8 69.5 643  66.2+0.13 | 64.1:£0.21

CIFAR10-C 435 44.1 325 334 284 29.7+0.09 | 28.0+0.06

Mixed CIFAR100-C 46.4 82.5 43.1 454 350  38240.15 | 33.5:0.02
ImageNet-C 82.0 86.4 78.1 794  69.5  72.5£0.11 | 70.8£0.27

CIFAR10-C 435 26.2 11.8 10.8 105  10.4+0.11 8.9:0.09

Gradual CIFAR100-C 46.4 75.9 334 27.0 243 2474025 | 23.3+0.33
ImageNet-C 82.0 91.6 96.4 677 388  39.140.06 | 37.9+0.17

CIFAR10-C 435 18.2 216 18.3 175 17.840.08 | 16.7+0.15

Episodic CIFAR100-C 46.4 31.1 41.9 345 304 314+031 | 30.1+0.13
ImageNet-C 82.0 573 6.70 615  51.6 5414025 | 52.7+0.14

CIFAR10-C 435 17.0 19.4 16.7 156 1524007 | 14.6%0.08

Cyclic CIFAR100-C 46.4 347 37.8 337 289 3004027 | 27.5+0.15
ImageNet-C 82.0 59.7 66.1 637 531 5274011 | 51.9+0.23

CIFAR10-C 435 15.8 18.8 197 164  165+0.18 | 14.7+0.09

fg’”z.Gml‘j’ CIFAR100-C 46.4 61.5 325 349 295 30.1+0.14 | 27.9+0.11
ontinua ImageNet-C 82.0 62.2 68.6 592 557 5434022 | 52340.18
[ CIFAR10-C 435 19.6 17.8 15.7 159  158:0.18 | 13.940.13
(c yt. ) CIFAR100-C 46.4 52.8 33.0 322 293 30.1£0.12 | 28.2:+0.14
ontinua ImageNet-C 82.0 60.0 65.1 525 543 5284031 | 48.6+0.13
Hard2Easy CIFAR10-C 435 21.6 19.4 17.1 163 16.6£020 | 15.320.04
(Continual) CIFAR100-C 46.4 66.7 35.7 330 295 3024011 | 28.2:+0.06
ontinua ImageNet-C 82.0 62.8 68.4 632 551 5434022 | 52.8+0.17

. . CIFAR10-C 435 213 19.9 16.8 169 1674012 | 16.240.15
M ’x‘;‘éAf ”l” C‘.’””)””“l CIFAR100-C 46.4 63.7 35.1 332 296 30.6+0.17 | 28.1+0.10
veriapping ImageNet-C 82.0 91.8 75.4 709 525  55440.19 | 53.6-0.11

. . CIFAR10-C 435 46.0 18.9 17.8 167  16.6+0.06 | 14.6+0.07
Co”z’g““llAf fer M)”“”d CIFAR100-C 46.4 97.1 34.5 333 294 30.0+0.18 | 26.6+0.17
veriapping ImageNet-C 82.0 85.6 64.2 55.3 551  57.540.20 | 54.7+0.20
Mean Error Rates Al - 54.5 424 406 350  356+0.13 | 33.8+0.21

Table 1: Average online classification error rate (%) over 5 runs for different TTA settings across multiple datasets. The table includes results
for various TTA methods: TENT-cont., RoOTTA, CoTTA, ROID, SloMo-Fast, and SloMo-Fast* (where all parameters of the student model are
updated), evaluated in different settings. Results are shown for CIFAR10-C, CIFAR100-C, ImageNet-C, ImageNet-R, and ImageNet-Sketch
datasets. Results in bold represent the best performance, while those in gray are the second best.

highlights the method’s ability to leverage gradual trends in
data shifts for more efficient adaptation.

The Episodic Setting, where data changes abruptly but
remains constant within each episode, further demonstrates
the versatility of SloMo-Fast. It achieves the lowest er-
ror rates on CIFAR10-C (16.740.15%) and CIFAR100-C
(30.1£0.13%), with substantial improvements over CoTTA
(18.3% and 34.5%) and ROID (17.5% and 30.4%). On
ImageNet-C, the method achieves an error rate of 51.6%, im-
proving over CoTTA (61.5%) and RoTTA (60.7%). Simi-
larly, in the Cyclic Setting, which involves repeated shifts
between distributions, SloMo-Fast achieves 14.6+0.08% on
CIFAR10-C, 27.5£0.15% on CIFAR100-C, and 52.740.11%
on ImageNet-C, consistently outperforming other methods.

In more specialized settings like cross-group continual
and hard-to-easy continual, SloMo-Fast consistently achieves

top-tier performance. For example, in the cross-group
continual setting, it achieves 14.740.09% on CIFARI10-
C, 279£0.11% on CIFAR100-C, and 54.34+0.22% on
ImageNet-C, outperforming ROID, RoTTA and CoTTA.
Similarly, in the hard-to-easy continual scenario, the method
achieves 15.3+0.04% on CIFAR10-C, 28.2+0.06% on
CIFAR100-C, and 54.3+0.22% on ImageNet-C, consistently
outperforming other methods like CoTTA and ROID. These
results underscore the efficacy of SloMo-Fast in both gradual
and abrupt domain shifts, demonstrating its ability to general-
ize across multiple TTA scenarios. Its robust performance on
challenging datasets like ImageNet-C, which involve higher
resolution and greater complexity, further establishes its scal-
ability and practicality for real-world applications. Addition-
ally, the narrow confidence intervals across experiments high-
light its stability and reproducibility. By achieving the best or



Mean Error Rate (%)
MSE IM CL PC ST CIFARIO-C CIFAR100-C

v v v v v 14.88 28.00

v v v v 15.89 28.23
v v v v 16.17 28.35
v v v v 16.04 28.57
v v v v 15.78 28.08
v v v v 16.11 28.48

Table 2: Ablation study of classification error rates (%)

for CIFAR10-to-CIFAR10C and CIFAR100-to-CIFAR100C online
continual test-time adaptation tasks. The results are evaluated on
WideResNet-28 and ResNeXt-29 models, respectively, under cor-
ruption severity level 5. The table examines the impact of indi-
vidual loss components (Mean Squared Error (MSE), Information
Maximization (IM), and Contrastive Loss (CL)) and optimization
strategies (Prior Correction (PC) and Stochastic Restoration (ST))
on model performance.

Queue
Size 25 50 100
Dataset
CIFAR10-C 14.97 1492 14.88 1493 14.98
CIFAR100-C 2819 28.24 28.16 28.21 28.11
Table 3: Ablation study of classification error rates (%)

for CIFAR10-to-CIFAR10C and CIFAR100-to-CIFAR100C online
continual test-time adaptation tasks. This table examines the impact
of different queue sizes on classification error rates.

second-best performance across almost all settings, SloMo-
Fast demonstrates a significant advancement over prior meth-
ods like ROID and CoTTA, making it a highly reliable frame-
work for tackling non-stationary data distributions.

4.3 Ablation Study on Loss Components

Table 2 evaluates the impact of various loss components, in-
cluding Mean Squared Error (MSE), Information Maximiza-
tion (IM), and Contrastive Loss (CL), along with optimiza-
tion strategies such as Prior Correction (PC) and Stochastic
Restoration (ST), on model performance for the CIFAR10-
C and CIFAR100-C datasets. For CIFAR10, combining all
components yields a mean error rate of 15.78%, while for CI-
FARI100, it achieves 28.48%, highlighting the importance of
leveraging a diverse set of losses and strategies for effective
adaptation.

4.4 Ablation Study on Priority Queue Size

Table 3 presents the impact of queue size on classification er-
ror rates for the CIFAR10-C and CIFAR100-C datasets. For
CIFAR-10C, the error rates remain fairly consistent across
different queue sizes, with the lowest error rate of 14.88%
occurring at a queue size of 25. Increasing the queue size to
50 or 100 does not lead to significant improvements, suggest-
ing diminishing returns. Similarly, for CIFAR100-C, the error
rates are stable across queue sizes, with the lowest error rate
of 28.11% achieved at the largest queue size of 100. These

t-SNE Visualization of Test Features and Class Prototypes

Classes
7.54 Class 0.0
° Class 1.0

Class 2.0
Class 3.0
Class 4.0
Class 5.0
Class 6.0
Class 7.0
Class 8.0
Class 9.0

0
000000000

2] 8
~10.01 §

=20 -10 0 10 20

Figure 3: t-SNE visualization of feature representations (o) and class
prototypes (x). The visualization highlights distinct class separa-
tion, showcasing the model’s ability to effectively learn discrimina-
tive feature representations.
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Figure 4: Impact of batch size on error rates (%) in the CIFAR10-to-
CIFAR10C online continual test-time adaptation setup across meth-
ods (TENT, CoTTA, ROID, and SloMo-Fast*). The chart highlights
that increasing batch size improves classification performance, with
SloMo-Fast* outperforming all other methods at each batch size.

results indicate that the model’s performance is not highly
sensitive to changes in queue size for either dataset.

4.5 Qualitative Results: t-SNE Visualization

Finally, to visualize the effectiveness of our method, we pro-
vide t-SNE plots of the feature space at final stage of adap-
tation in Figure 3. The t-SNE visualization for SloMo-Fast
shows that the learned representations are well-clustered and
exhibit clear separation between the different classes, even
under severe corruption conditions.

5 Conclusion

We presented SloMo-Fast, a dual-teacher framework for Con-
tinual Test-Time Adaptation (CTTA) that operates without
source data while improving adaptability, generalization, and
efficiency. By combining the Fast-Teacher (7%) for rapid



adaptation and the Slow-Teacher (73) for robust general-
ization, SloMo-Fast leverages class prototypes, contrastive
learning, and efficient batch normalization updates. Exper-
iments on CIFAR-10C, CIFAR-100C, and ImageNet-C show
SloMo-Fast surpasses existing CTTA methods across diverse
scenarios. Its effectiveness in real-world settings, including
repetitive and mixed-domain shifts, sets new benchmarks for
robustness and generalization, advancing CTTA for privacy-
sensitive and resource-limited environments.
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5.1 Architecture Evolution

CoTTA [Wang et al., 2022] employs a teacher-student frame-
work where the student model is updated based on the
pseudo-labels generated by the teacher model. The teacher
model, in turn, is updated using the Exponential Moving
Average (EMA) of the student parameters. While CoTTA
demonstrates effective adaptation, it suffers from catastrophic
forgetting and lacks the ability to retain long-term domain
knowledge.

To address this limitation, RMT [Débler et al., 2023] intro-
duces source prototypes and utilizes contrastive loss between
the source class prototypes and test-time inputs. However, re-
lying on source prototypes is often impractical in real-world
scenarios due to their rarity and unavailability in many appli-
cations.

In contrast, our SloMo-Fast framework introduces a second
teacher model that is more domain-generalized. Instead of
using source prototypes, SloMo-Fast constructs class proto-
types from confident test samples. This approach eliminates
the dependence on source data while enabling long-term re-
tention of domain knowledge, ensuring robust adaptation and
generalization across dynamic and evolving domains.

6 Supplementary Experimental Results

6.1 Datasets:

CIFAR10-C: Consists of 10 classes, with 1,000 samples per
class for each domain, amounting to 10,000 images per do-
main.

CIFAR100-C: Comprises 100 categories, with 100 sam-
ples per category or class for each domain, yielding a total of
10,000 images per domain.

ImageNet-C: Contains 1,000 categories or classes, with
50 samples per category for each domain, resulting in 50,000
images per domain.

ImageNet-R: Features 200 classes from ImageNet, with
30,000 images focusing on a variety of renditions, such as
art, cartoons, and sketches.

ImageNet-Sketch: Contains 1,000 classes with 50,889
images in total, created as sketch drawings corresponding to
the ImageNet categories.

6.2 Benchmarks for Test-Time Adaptation

All evaluations are conducted in an online test-time adapta-
tion (TTA) setting, where predictions are updated and evalu-
ated immediately. We evaluate our model on benchmarks for
analyzing CTTA:

Continual Domains:  Following [Marsden et al,
2024al, the model adapts sequentially across K domains
[Dy,Ds,...,Dk] without prior knowledge of domain
boundaries. For the corruption datasets, the sequence in-
cludes all 15 corruption types encountered at severity level
5.

Mixed Domains: As in [Marsden et al., 2024a], test data
from multiple domains are encountered together in a mixed
manner during adaptation, with consecutive samples often
coming from different domains.
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Figure 5: Compared to CoTTA, RMT, and SloMo-Fast.

Gradual Domains: Although some domain shifts hap-
pen abruptly, many progress gradually over time(severity of
domain shifts changes incrementally), making this setting a
practical scenario for test-time adaptation.

Episodic Setting: This setting considers a single domain
shift, where upon encountering a new domain, the adaptation
model resets to the source model and starts adaptation from
the beginning.

Cyclic Domains: A new benchmark where the domain se-
quence is repeated in cycles based on corruption subgroups
(e.g., Noise, Blur, Weather, Digital, and Distortion). Sub-
groups include corruptions such as noise (gaussian, shot, im-
pulse), blur (defocus, motion, glass), weather (snow, fog,
frost), digital (brightness, contrast), and distortion (elastic
transform, pixelate, jpeg compression).

Continual-Cross Group: Domains are encountered se-
quentially in a continual setup, where each domain is sam-
pled one after another from different corruption groups (e.g.,
Noise, Blur, Weather, Digital, Distortion) like inter group
mixing.

Continual-Hard2Easy: Domains are encountered se-
quentially, where corruptions are sorted from high error to
low error based on the initial source model’s performance at
severity level 5.

Continual-Easy2Hard: Domains are encountered se-
quentially, where corruptions are sorted from low error to
high error based on the initial source model’s performance
at severity level 5.

Mixed after Continual TTA: Domains are first encoun-
tered sequentially, as in the continual setting, followed by
data from previously seen domains being encountered in a
mixed manner.

Continual after Mixed TTA: Domains are first encoun-
tered in a mixed manner, where test data from multiple do-
mains come together randomly. After this mixed phase, the
domains are encountered sequentially, as in the continual set-
ting.
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CIFAR10-C

Source 723 657 729 469 543 348 420 251 413 260 93 467 266 584 303 | 435
TENT-cont. 250 203 290 138 31.7 162 141 186 176 174 108 156 243 19.7 251 | 200
RoTTA 303 555 700 238 441 207 210 227 160 94 277 270 58.6 292 334 | 193
CoTTA 242 219 265 120 279 127 107 152 146 128 79 11.2 185 14.0 18.1 16.5
ROID 237 187 264 115 28.1 124 10.1 147 143 120 7.5 93 198 145 203 16.2

SloMo-Fast 226 190 249 13.0 250 140 123 150 147 135 101 125 174 133 163 | 162
SloMo-Fast* | 224 185 247 119 246 122 101 127 129 114 75 99 162 11.7 159 | 148

CIFAR100-C
Source 73.0 68.0 394 293 541 308 288 394 354 305 93 551 372 747 412 | 464
TENT-cont. 373 356 416 379 513 481 489 598 653 736 742 857 891 O9l.1 937 | 622
RoTTA 49.1 449 455 302 427 295 261 322 307 375 247 291 326 304 367 | 348
CoTTA 405 382 398 272 382 284 264 334 322 406 252 270 324 284 338 | 328
ROID 36,5 319 332 249 349 268 243 289 285 31.1 228 242 307 265 344 | 293

SloMo-Fast 37.1 331 345 249 354 270 241 293 289 330 229 250 308 272 347 | 299
SloMo-Fast* | 37.8 327 333 262 312 269 243 268 265 284 233 243 261 242 270]| 279

ImageNet-C
Source 97.8 97.1 982 81.7 89.8 852 779 835 771 759 413 945 825 793 68.6 | 82.0
TENT-cont. 928 91.1 925 878 902 872 822 822 820 79.8 480 925 835 756 704 | 825
RoTTA 894 886 893 834 891 862 800 789 769 742 374 89.6 795 69.0 59.6| 78.1
CoTTA 89.1 86.6 885 809 872 8l.1 758 733 752 705 416 850 781 656 61.6/| 76.0
ROID 764 753 761 779 817 751 699 709 688 643 425 854 698 53.0 556 | 545

SloMo-Fast 68.6 652 645 682 667 57.0 497 510 564 431 338 573 439 414 457 | 542
SloMo-Fast* | 68.5 626 603 656 634 557 504 504 545 437 363 535 43.0 407 43.0 | 528

Table 4: Online classification error rate (%) for the corruption benchmarks at the highest severity level 5 for the Continual TTA setting. For
CIFAR10-C the results are evaluated on WideResNet-28, for CIFAR100-C on ResNeXt-29, and for ImageNet-C, ResNet-50 are used. Results
marked with (*) indicate that all parameters of the student model are updated; otherwise, only the Batch Normalization layers are updated.
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CIFAR10-C
Source 723 657 729 469 543 348 420 251 413 260 93 467 26.6 584 303 | 435
TENT-cont. 73.5 70.1 814 31.6 603 29.6 285 30.8 353 257 13.6 442 326 702 349 | 44.1
CoTTA 38.7 360 56.1 360 368 323 310 199 176 272 11.7 526 305 358 257 | 325
RoTTA 60.0 555 70.0 238 44.1 207 213 202 227 160 94 227 27.0 58.6 292 | 334
ROID 37.1 343 509 248 381 225 220 188 185 188 99 256 272 457 262 | 28.0
SloMo-Fast 39.1 368 538 275 386 247 235 180 181 192 92 333 289 519 249 | 29.7
SloMo-Fast* | 334 321 539 264 350 227 234 179 178 19.8 114 30.1 259 464 234 | 280
CIFAR100-C
Source 73.0 68.0 394 293 541 30.8 288 395 458 503 295 551 372 747 412 | 464
TENT-cont. 956 952 892 728 829 744 723 780 797 847 710 885 77.8 96.8 787 | 825
CoTTA 544 527 498 360 458 367 339 389 358 520 304 609 402 38.0 41.1 | 43.1
RoTTA 650 623 393 334 50.0 342 326 366 365 450 264 416 406 89.5 485 | 454
ROID 40.5 38.0 32.0 281 405 29.7 27.6 341 338 413 287 38.7 343 397 385 | 350
SloMo-Fast 50.6 464 340 208 422 313 28.6 349 346 446 278 419 353 525 39.1 | 382
SloMo-Fast* | 41.6 39.2 298 28.1 36.7 29.6 274 313 31.5 379 271 340 322 423 344 | 335
Imagenet-C
Source 97.8 97.1 982 81.7 89.8 852 779 835 771 759 413 945 825 793 68.6| 820
TENT-cont. 99.2 987 99.0 90.5 951 90.5 84.6 866 840 865 467 981 86.1 77.7 729 | 86.4
CoTTA 89.1 86.6 885 809 872 8l.1 758 733 752 705 41.6 850 781 656 61.6| 76.0
RoTTA 894 886 893 834 89.1 862 800 789 769 742 374 896 795 690 59.6 | 78.1
ROID 764 753 76.1 779 81.7 751 699 709 688 643 425 854 69.8 53.0 556 | 69.5
SloMo-Fast 830 812 828 779 833 766 726 68.6 713 667 447 837 73.6 619 59.1 | 725

Table 5: Online classification error rate (%) for the corruption benchmarks at the highest severity level 5 for the generalization experiments
with mixed domains. For CIFARI10-C the results are evaluated on WideResNet-28, for CIFAR100-C on ResNeXt-29, and for ImageNet-
C, ResNet-50 are used. Results marked with (*) indicate that all parameters of the student model are updated; otherwise, only the Batch

Normalization layers are updated.

6.3 Detailed result
6.4 Ablation Study on Losses Applied to T2

The results of the ablation study are summarized in Tables 13
and 14, which evaluate the effect of different loss functions
applied to the 75 model on the CIFAR10-to-CIFAR10C and
CIFAR100-to-CIFAR100C online continual test-time adap-
tation tasks, respectively, evaluations use the WideResNet-28
and ResNeXt-29 model under the highest corruption severity
level (level 5). The classification error rates (%) are reported
for 15 corruption types, along with the mean error rate as a
summary.

In the CIFAR10-to-CIFARI10C task (Table 13), the T5
model trained with all three losses—mean squared error
(MSE), information maximization (IM), and contrastive loss
(CL)—achieves the lowest mean error rate of 14.88%. This
indicates the strong performance of the full configuration un-
der severe corruption scenarios. Removing the contrastive
loss (v MSE, v IM) slightly increases the mean error rate
to 16.04%, suggesting that CL contributes significantly to
robustness. Excluding the information maximization loss
(v MSE, v CL) results in a mean error rate of 16.17%,
highlighting the importance of IM in the adaptation process.
When MSE is excluded (v' IM, v CL), the mean error rate
is slightly better at 15.89%, reflecting a strong interaction be-
tween IM and CL, even in the absence of MSE.

For the CIFAR100-to-CIFAR100C task (Table 14), simi-
lar trends are observed. The 75 model trained with all three
losses achieves the lowest mean error rate of 28.00%. Re-
moving CL (v MSE, v IM) increases the mean error rate to
28.57%, demonstrating the importance of CL in enhancing
robustness. Excluding IM (v MSE, v CL) leads to a mean
error rate of 28.35%, showing the critical role of IM in the
adaptation process. Finally, removing MSE (v IM, v" CL)
results in a mean error rate of 28.23%, again underscoring
the synergy between IM and CL.

The results from both CIFAR10-to-CIFAR10C and
CIFAR100-to-CIFAR100C tasks consistently highlight the
benefits of integrating all three losses in the 7% model. This
combination achieves the lowest error rates across diverse
corruption types, validating the effectiveness of the proposed
design for continual test-time adaptation.

6.5 Ablation Study on Prior Correction and
Stochastic Restoration

The results of the ablation study are presented in Tables
15 and 16, which evaluate the effect of Prior Correction
(PC) applied to the model output and Stochastic Restoration
(ST) of the T5 model on the CIFAR10-to-CIFAR10C and
CIFAR100-to-CIFAR100C online continual test-time adapta-
tion tasks, respectively. The evaluations are conducted using
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CIFAR10-C

Source 723 657 729 469 543 348 420 251 413 260 93 467 266 584 303 435|435
Tent-cont. 246 198 284 131 312 168 140 189 183 169 114 172 255 197 252 393|213
CoTTA 240 218 257 117 275 21.6 102 150 139 125 75 108 181 135 178 267 | 168
RoTTA 302 254 346 181 339 146 108 164 148 142 79 121 205 168 194 295|199
Roid 236 187 265 116 282 125 99 144 139 117 73 93 197 144 205 273|169

SloMo-Fast 23.8 188 263 122 265 131 106 143 135 129 81 114 186 132 173 264 | 16.7
SloMo-Fast* | 227 185 24.6 125 247 137 121 144 145 128 96 120 169 126 161 213 | 162

CIFAR100-C
Source 73.0 680 394 293 541 308 288 394 354 305 93 551 372 747 412 464 | 464
Tent-cont. 373 357 421 382 510 459 463 558 621 728 723 839 90.6 928 953 978 | 63.7
CoTTA 40.8 38.0 398 272 38.0 285 264 334 322 402 251 269 321 284 338 409|332
RoTTA 494 447 455 302 423 296 259 320 305 377 247 294 328 299 366 408 | 35.1
Roid 364 319 336 248 348 270 241 291 285 313 228 242 305 264 339 347|296

SloMo-Fast 370 328 350 262 352 280 251 296 29.0 332 238 252 31.1 27.1 348 363 | 306
SloMo-Fast* | 37.8 329 33.1 266 31.6 27.1 248 265 262 284 236 243 265 245 271 280 | 28.1

Imagenet-C
Source 97.8 97.1 982 81.7 898 852 779 835 77.1 759 413 945 825 793 68.6 820 | 82.0
TENT-cont. 714 664 69.1 828 91.0 957 976 99.0 99.3 993 992 995 994 993 994 99.6 | 91.8
CoTTA 782 683 642 754 719 70.1 678 723 71.6 677 627 744 702 675 692 824 | 709
RoTTA 79.6 720 69.6 77.1 721 73.1 68.6 721 73.6 77.1 657 909 694 757 754 938 | 754
Roid 63.6 60.3 61.1 651 650 525 474 480 541 399 326 535 421 394 445 705|525

SloMo-Fast 68.8 653 647 685 66.6 571 498 50.8 564 43.1 338 572 438 414 459 729 | 554

Table 6: Online classification error rate (%) for the corruption benchmarks at the highest severity level 5 for the mixed after continual domains
TTA setting. For CIFAR10-C the results are evaluated on WideResNet-28, for CIFAR100-C on ResNeXt-29, and for ImageNet-C, ResNet-50
are used. Results marked with (*) indicate that all parameters of the student model are updated; otherwise, only the Batch Normalization
layers are updated.
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CIFAR10-C

Source 723 657 729 469 543 348 420 251 413 260 93 46.7 266 584 303 43.5
TENT-cont. 247 222 324 11.6 321 129 109 160 16.1 13.0 7.6 11.1 2197 172 236 18.2
RoTTA 302 274 378 137 359 147 127 178 19.0 155 8.0 193 23.65 21.0 276 21.6
CoTTA 240 229 277 122 302 134 117 168 170 144 179 12.5 2250 187 226 18.3
ROID 236 217 306 11.0 304 129 105 152 152 127 7.6 104 21.06 162 236 17.5

SloMo-Fast 227 196 261 128 267 137 115 149 151 128 88 120 1992 146 196 | 16.7
SloMo-Fast* | 245 203 28.1 115 28.7 124 102 145 144 127 7.6 104 1969 148 206 | 16.7

CIFAR100-C
Source 73.0 68.0 394 293 541 308 288 394 354 305 93 551 372 747 412 | 464
TENT-cont. 372 348 344 249 373 275 251 303 319 336 239 281 328 283 36.8| 3l.1
RoTTA 494 475 486 299 472 322 303 390 441 441 289 622 405 389 456 | 419
CoTTA 40.8 383 403 27.8 39.7 29.7 277 354 344 428 260 301 355 315 377 345
ROID 364 341 341 245 363 269 249 301 304 334 234 262 321 279 357 | 304

SloMo-Fast 379 342 345 272 363 292 263 308 306 323 251 273 335 292 360 | 314
SloMo-Fast* | 37.3 33.7 348 250 357 271 243 295 29.1 330 231 255 314 271 349 | 30.1

Imagenet-C
Source 97.8 97.1 982 81.7 89.8 852 779 835 771 759 413 945 825 793 68.6 | 820
TENT-cont. 714 694 702 719 727 587 507 529 587 42,6 327 734 455 414 475 | 573
ROoTTA 798 79.6 804 80.7 813 683 569 589 631 467 324 762 509 458 54.1 | 63.7
CoTTA 78.1 77.8 773 805 782 640 527 580 60.5 439 329 751 488 423 524 | 615
ROID 63.7 614 624 659 659 529 476 480 541 399 326 539 422 394 446 | 51.6

SloMo-Fast 68.8 658 645 685 66.7 566 496 507 565 426 335 574 436 410 458 | 54.1
SloMo-Fast* | 682 624 604 654 632 557 507 504 544 43.6 363 535 431 406 429 | 527

Table 7: Online classification error rate (%) for the corruption benchmarks at the highest severity level (Level 5) in the episodic TTA setting.
Adaptation resets to the source model parameters for each domain shift. The results are evaluated on WideResNet-28 for CIFAR10-C,
ResNeXt-29 for CIFAR100-C, and ResNet-50 for ImageNet-C. Results marked with (*) indicate that all parameters of the student model are
updated; otherwise, only the Batch Normalization layers are updated.
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CIFAR10-C
Source 435 723 657 729 469 543 348 420 251 413 260 93 467 266 584 303 | 435
TENT-cont. | 41.1 435 433 51.6 348 540 427 40.1 477 482 442 400 482 524 489 552 | 46.0
CoTTA 324 221 199 246 129 268 134 128 153 145 144 96 139 195 148 187 | 178
ROTTA 331 249 209 297 148 305 143 111 165 153 13.1 9.1 127 203 174 194 | 189
ROID 282 221 178 258 113 278 124 100 145 140 124 73 92 195 146 202 | 167

SloMo-Fast | 29.7 212 182 264 11.6 275 122 97 142 136 124 75 103 188 137 194 | 16.6
SloMo-Fast* | 27.6 182 159 21.7 11.1 23.0 115 95 127 120 108 72 93 160 113 155 | 146

CIFAR100-C
Source 464 730 68.0 394 293 541 308 288 394 354 305 93 551 372 747 412 | 464
TENT-cont. 838 972 977 979 979 981 97.8 980 979 982 98.0 979 982 983 984 985 | 97.1
CoTTA 430 376 365 386 267 373 281 268 334 323 412 258 27.8 334 288 346 | 333
RoTTA 453 383 360 366 279 403 300 274 332 315 379 271 295 344 372 390 | 345
ROID 350 339 316 325 247 349 267 240 292 286 31.0 228 244 305 267 339 | 294

SloMo-Fast | 38.2 337 319 343 251 347 273 241 293 287 328 231 250 308 268 343 | 30.0
SloMo-Fast* | 34.6 303 279 294 244 288 254 230 254 253 280 225 234 262 240 279 | 266

Imagenet-C
Source 82.0 978 971 982 817 89.8 852 779 835 771 759 413 945 825 793 68.6 | 82.0
TENT-cont. 877 89.1 881 873 884 90.6 868 803 863 872 8I.1 685 938 846 839 860 | 85.6
CoTTA 76.0 624 61.1 609 638 645 557 514 540 553 474 40.1 557 47.1 433 46.1 | 553
RoTTA 780 800 748 748 846 759 688 584 60.1 61.7 53.0 365 691 521 484 507 | 642
ROID 694 674 615 622 697 657 575 495 523 581 433 335 589 449 417 456 | 55.1

SloMo-Fast | 79.6 695 653 653 705 687 598 508 53.0 59.0 454 339 615 468 43.0 474 | 575

Table 8: Online classification error rate (%) for the corruption benchmarks at the highest severity level 5 for the continual after mixed domains
TTA setting. For CIFAR10-C the results are evaluated on WideResNet-28, for CIFAR100-C on ResNeXt-29, and for ImageNet-C, ResNet-50
are used. Results marked with (*) indicate that all parameters of the student model are updated; otherwise, only the Batch Normalization
layers are updated.
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CIFAR10-C

Source 723 657 729 469 543 348 420 251 413 260 93 46.7 26.6 584 303 43.5
TENT-cont. 155 147 210 13.8 357 31.5 293 327 265 259 237 263 319 279 370 26.2
CoTTA 159 11.5 13.6 7.7 18.1 9.3 8.5 108 9.8 8.4 8.1 8.1 105 9.1 12.7 10.8
ROTTA 169 11.5 15.1 8.3 19.7 11.1 9.1 126 11.1 8.7 8.1 8.5 11.6 103 14.6 11.8
ROID 14.1 11.8 153 6.7 19.7 7.5 11.1 10.1 6.8 59 6.4 10.5 8.9 14.4 10.5

9.1
SloMo-Fast 149 119 153 68 193 91 75 106 95 7.1 6.0 6.7 101 84 135 | 104
SloMo-Fast* | 133 103 122 70 146 81 72 85 79 67 64 6.5 79 69 94 8.9

CIFAR100-C
Source 73.0 680 394 293 541 308 288 394 354 305 93 551 372 747 412 | 464
TENT-cont. 364 451 474 475 646 726 734 771 867 964 978 981 984 98.6 985 | 759
CoTTA 337 294 29.0 248 302 256 250 269 264 265 244 250 256 246 27.6| 270
RoTTA 343 286 30.1 272 350 306 295 333 335 346 323 345 364 36.1 452 | 334
ROID 285 260 228 213 293 235 221 244 245 230 21.0 21.6 250 227 293 | 243

SloMo-Fast 293 265 243 220 293 238 224 248 246 235 213 219 248 226 29.1 | 247
SloMo-Fast* | 282 249 233 224 248 228 222 229 226 223 219 219 225 221 238 | 233

Imagenet-C
Source 97.8 97.1 982 81.7 89.8 852 779 835 77.1 759 413 945 825 793 68.6 | 82.0
TENT-cont. 448 541 80.1 99.0 995 995 996 99.6 99.6 99.7 99.7 998 99.8 99.7 998 | 91.6
CoTTA 442 533 589 654 686 69.1 71.0 724 742 731 715 733 741 730 740 | 67.7
RoTTA 594 920 982 99.1 993 995 99.6 99.8 998 998 99.8 99.8 99.8 999 99.8 | 964
ROID 425 427 440 457 455 386 40.0 41.1 445 329 285 345 352 321 347 | 388

SloMo-Fast 43.0 433 448 463 459 392 399 412 446 333 287 344 352 326 346 | 39.1

Table 9: Online classification error rate (%) for the corruption benchmarks in the gradual domains TTA setting. In this setting, the severity
of domain shifts changes incrementally over time, simulating a practical scenario for test-time adaptation. The results are evaluated on
WideResNet-28 for CIFAR10-C, ResNeXt-29 for CIFAR100-C, and ResNet-50 for ImageNet-C. Results marked with (*) indicate that all
parameters of the student model are updated; otherwise, only the Batch Normalization layers are updated.



@

g &g >

- g N 4'? $ S 3] &

g & =S 5 5 S S § <)
Method ¢ & g A g ¢ & ¢ & 5 & &4 & N S |Mem

CIFAR10-C

Source 723 469 251 93 657 543 260 413 729 348 420 266 584 303 435 413
TENT-cont. | 24.6 118 151 81 196 308 158 153 309 156 162 224 178 139 240 | 188
CoTTA 240 119 161 78 201 268 139 108 232 115 120 182 137 97 176 158
RoTTA 302 190 181 81 252 326 153 153 331 169 134 197 165 113 202 | 197
ROID 236 118 144 7.1 196 273 146 96 283 124 120 194 147 100 209 | 164

SloMo-Fast 244 11.6 145 7.1 19.3 280 147 109 259 125 128 193 146 10.1 204 | 165
SloMo-Fast* | 22.5 12.1 139 7.8 16.5 244 134 107 21.7 11.8 11.6 16,6 120 94 163 | 14.7

CIFAR100-C
Source 730 293 394 93 680 541 305 354 394 308 288 372 747 412 464 | 412
TENT-cont. 373 298 354 301 412 495 526 620 704 725 820 875 887 905 934 | 615
CoTTA 40.8 366 377 274 374 273 254 344 399 325 256 275 329 28.6 337 | 325
ROTTA 494 416 415 317 392 298 260 36.1 363 31.7 255 341 321 308 36.8| 349
ROID 364 327 31.8 253 346 269 241 289 288 314 229 253 31.1 268 348 | 295

SloMo-Fast 372 254 293 232 330 350 292 261 348 270 333 31.1 272 243 348 | 30.1
SloMo-Fast* | 37.8 267 284 237 29.1 31.7 275 251 303 256 287 273 244 231 284 | 279

ImageNet-C
Source 97.8 817 779 413 971 898 759 77.1 835 852 982 945 825 793 686 | 820
TENT-cont. 814 789 605 354 735 742 619 718 705 657 515 51.6 472 557 53.6| 622
CoTTA 84.6 835 634 346 735 744 579 694 647 594 449 454 405 490 43.1 | 592
ROTTA 88.0 925 697 354 845 848 674 772 853 773 516 52,6 489 589 547 | 68.6
ROID 717 703 550 341 668 68.1 585 583 655 582 439 449 420 502 475 | 557

SloMo-Fast 68.8 69.6 520 337 642 670 567 581 633 563 434 439 416 493 464 | 543
SloMo-Fast* | 68.1 67.7 53.0 37.6 58.6 62.1 544 557 569 527 433 431 412 463 435 | 523

Table 10: Online classification error rate (%) for the corruption benchmarks at the highest severity level (Level 5) in the continual-cross group
TTA setting. In this setting, domains are sequentially sampled from different corruption groups (e.g., Noise, Blur). The results are evaluated
on WideResNet-28 for CIFAR10-C, ResNeXt-29 for CIFAR100-C, and ResNet-50 for ImageNet-C. Results marked with (*) indicate that all
parameters of the student model are updated; otherwise, only the Batch Normalization layers are updated.
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Source 93 251 260 266 303 348 413 420 435 467 469 543 584 657 723 | 729
TENT-cont. 76 154 131 222 255 155 172 148 164 139 309 184 246 253 336 | 196
CoTTA 80 164 133 210 206 122 145 99 104 98 254 139 181 195 226 | 157
RoTTA 80 178 147 223 249 132 164 129 110 119 302 162 209 196 273 | 178
ROID 76 147 119 195 21.0 125 144 101 94 103 282 142 190 199 255 | 159
SloMo-Fast | 7.5 143 123 196 210 123 138 104 108 108 272 139 178 198 255 | 158
SloMo-Fast* | 85 134 116 18.1 188 11.6 126 93 97 92 224 120 151 159 207 | 13.9

CIFAR100-C
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Source 93 288 293 305 308 354 372 394 394 412 464 541 551 680 73.0 | 747
TENT-cont. | 250 257 252 28.6 346 403 426 50.1 527 593 709 769 821 881 900 | 52.8
CoTTA 277 270 254 282 335 382 328 353 320 400 361 27.1 350 362 282 | 322
RoTTA 303 287 262 30.1 340 406 321 375 307 368 365 295 366 352 307 | 330
ROID 363 319 335 248 349 269 241 29.1 286 31.0 230 244 306 264 341 | 293

SloMo-Fast 372 334 351 250 355 273 242 293 29.0 333 231 251 308 273 346 | 30.0
SloMo-Fast* | 37.8 326 333 260 323 27.1 240 271 269 289 230 242 270 246 284 | 282

ImageNet-C
@
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Source 413 686 759 771 779 793 817 820 825 835 852 898 945 97.1 978 98.2
TENT-cont. 34.1 544 46.6 619 551 46.1 756 494 593 633 718 69.7 723 714 69.5 60.0
CoTTA 346 56,6 458 60.5 518 408 686 443 503 524 61.8 550 557 555 53 52.5
RoTTA 343 588 534 685 637 506 8l1.1 563 616 700 779 747 789 740 72.8 65.1
ROID 334 48,0 432 584 517 423 673 463 51.7 577 656 607 643 61.8 615 54.3

SloMo-Fast 326 46.1 414 557 49.1 410 66.0 434 497 551 655 578 631 634 626 | 528

Table 11: Online classification error rate (%) for the corruption benchmarks at the highest severity level (Level 5) in the continual-easy-to-
hard TTA setting. In this setting, domains are sorted sequentially from low to high error based on the initial source model’s performance.
The results are evaluated on WideResNet-28 for CIFAR10-C, ResNeXt-29 for CIFAR100-C, and ResNet-50 for ImageNet-C. Results marked
with (*) indicate that all parameters of the student model are updated; otherwise, only the Batch Normalization layers are updated.
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Source 729 723 657 584 543 469 46.7 435 42.0 413 348 303 26.6 26.0 25.1 9.3
TENT-cont. 324 236 222 199 316 160 17.1 151 202 193 249 260 212 213 13.7 21.6
CoTTA 279 242 226 176 28.1 11.7 135 109 148 123 19.1 186 13.0 14.6 8.1 17.1
RoTTA 37.8 275 245 21.5 333 140 152 120 156 139 202 19.6 13.0 14.4 8.3 19.4
ROID 305 217 182 149 266 112 9.6 100 146 119 21.1 193 12.9 14.5 73 16.3
SloMo-Fast 31.6 226 194 152 28.0 113 107 102 13.8 122 205 192 13.1 14.0 73 16.6
SloMo-Fast®* | 290 212 185 144 248 11.5 112 99 127 114 16.8 16.7 11.8 12.5 7.4 15.3
CIFAR100-C
5 = g
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Method g <) ) O < & & S 2 oS & S X Q N Mean
Source 747 73.0 68.0 551 541 464 412 394 394 372 354 308 305 29.3 28.8 9.3
TENT-cont. 283 370 374 423 494 559 613 708 76.0 84.5 888 89.7 918 92.9 94.1 66.7
CoTTA 31.5 400 37.6 288 37.6 418 327 358 335 386 336 276 250 259 256 33.0
RoTTA 390 49.1 429 449 419 397 31.6 375 304 398 33.0 28.0 248 264  25.8 35.7
ROID 343 31.6 330 233 346 264 238 294 289 326 231 26.1 31.9 282 348 29.5
SloMo-Fast 29.1 36.0 329 264 353 345 295 354 292 344 314 269 231 244  24.0 30.2
SloMo-Fast®* | 29.8 33.1 31.1 27.1 319 31.0 273 306 27.0 305 283 258 23.1 23.0 232 28.2
ImageNet-C
5 5 g
$§ 7 g § s § F g
Method F J & 5 & F £ &§ 8 & N & &£ & = Mean
Source 982 978 97.1 945 89.8 852 835 825 820 817 793 779 77.1 759 68.6 41.3
TENT-cont. 81.9 758 71.8 741 749 658 612 501 739 476 562 639 520 535 39.0 62.8
CoTTA 84.6 830 800 783 785 679 60.1 515 737 454 546 580 472 475 37.7 63.2
RoTTA 88.5 837 821 962 847 733 67.6 559 767 500 58.6 660 534 544 344 68.4
ROID 717 636 61.0 605 67.5 571 528 447 708 419 502 59.0 432 48.1 34.3 55.1
SloMo-Fast 679 666 640 596 669 565 512 440 674 417 499 562 428 465 33.8 54.3
SloMo-Fast* | 685 62.5 606 655 63.1 557 505 504 544 437 364 537 430 406 432 52.8

Table 12: Online classification error rate (%) for the corruption benchmarks at the highest severity level (Level 5) in the continual-hard-to-
easy TTA setting. In this setting, domains are sorted sequentially from high to low error based on the initial source model’s performance.
The results are evaluated on WideResNet-28 for CIFAR10-C, ResNeXt-29 for CIFAR100-C, and ResNet-50 for ImageNet-C. Results marked
with (*) indicate that all parameters of the student model are updated; otherwise, only the Batch Normalization layers are updated.

Table 13: Evaluating the effect of our proposed loss on 7%, evaluated on the CIFAR10-to-CIFAR10C online continual test-time adaptation
task. Results are reported as classification error rates (%) using a WideResNet-28 model with corruption severity level 5. Mean squared error
(MSE), information maximization (IM), and contrastive loss (CL).

Design Choices Error Rate (%)

MSE IM CL Gaussian Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Brightness Contrast Elastic Pixelate JPEG Mean
v v 22.5 18.4 25.1 13.3 24.8 14.0 12.5 145 143 134 10.0 12.4 17.2 13.1 16.5 16.1
v v 232 18.9 254 12.0 25.5 13.4 11.9 144 143 127 9.4 12.1 17.2 12.7 16.7  16.0

v v 22.6 18.5 24.6 13.0 24.6 13.6 12.0 143 141 13.1 9.6 12.1 17.2 12.6 159 158
v v v 22.4 18.5 247 11.9 24.6 12.2 10.1 127 129 114 7.5 9.9 16.2 11.7 159 148




Table 14: Evaluating the effect of our proposed loss on 7%, evaluated on the CIFAR100-to-CIFAR100C online continual test-time adaptation
task. Results are reported as classification error rates (%) using a ResNeXt-29 model with corruption severity level 5. Mean squared error

(MSE), information maximization (IM), and contrastive loss (CL).

Design Choices

Error Rate (%)

MSE IM CL Gaussian Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Brightness Contrast Elastic Pixelate JPEG Mean
v v 38.1 33.0 339 26.7 32.4 27.6 250 274 266 294 23.8 24.8 26.5 249 278 285
v v 38.9 332 334 26.6 32.0 27.3 248 267 270 283 23.6 242 26.7 24.7 272 283

v v 38.0 32.6 33.1 26.8 315 26.9 248 270 269 282 23.7 24.6 26.6 24.8 272 282
v v v 379 325 33.2 26.5 31.4 26.8 244 265 263 284 23.5 24.6 26.3 242 27.1  28.0

the WideResNet-28 and ResNeXt-29 model under the highest
corruption severity level (level 5). Classification error rates
(%) are reported for 15 corruption types, along with the mean
error rate as an overall summary.

In the CIFAR10-to-CIFAR10C task (Table 15), applying
PC to the output and using Stochastic Restoration of the 7%
model achieves the lowest mean error rate of 14.88%. This
result demonstrates the effectiveness of combining these tech-
niques for robust adaptation. When Stochastic Restoration is
removed, and only PC is applied to the output, the mean er-
ror rate increases to 16.11%, indicating the critical role of
Stochastic Restoration in enhancing the model’s robustness
under severe corruptions. Conversely, removing PC while
retaining Stochastic Restoration results in a mean error rate
of 15.78%, suggesting that Prior Correction also significantly
contributes to improved performance. These findings high-
light the complementary roles of PC and ST in enhancing the
adaptation capabilities of the 75 model.

In the CIFAR100-to-CIFAR100C task (Table 16), a simi-
lar trend is observed. Applying PC to the output alongside
Stochastic Restoration of the 75 model achieves the lowest
mean error rate of 28.00%. Removing Stochastic Restoration
while retaining PC increases the mean error rate to 28.48%,
demonstrating the importance of Stochastic Restoration for
handling severe corruptions. On the other hand, using only
Stochastic Restoration without PC results in a mean error rate
of 28.08%, highlighting the significant role of Prior Correc-
tion in reducing classification errors.

The results from both CIFAR10-to-CIFAR10C and
CIFAR100-to-CIFAR100C tasks consistently demonstrate
that the combination of Prior Correction and Stochastic
Restoration leads to the most effective adaptation.

6.6 Effect of Consistency Loss

Tables 17 and 18 present the classification error rates (%) for
the CIFAR10-to-CIFAR10C and CIFAR100-to-CIFAR100C
online continual test-time adaptation tasks, respectively.
These results evaluate the effect of applying a consistency
loss between the student model and teacher: T4, 15, and
Ty with data augmentation input(73(aug)). The evalua-
tions are conducted using WideResNet-28 for CIFAR10C
and ResNeXt-29 for CIFAR100C under the largest corrup-
tion severity level (level 5). Classification error rates are
reported for 15 corruption types, along with the mean er-
ror rate as a summary.For CIFAR10-C, the best results are
achieved by incorporating the consistency loss between the
student predictions and the predictions from both 73 and T5.
For CIFAR100-C, the best performance is obtained by using

the consistency loss between the student predictions and the
predictions from 75 and 7} with augmented samples.

6.7 CTTA Under Cyclic Domain Settings

In continual test-time adaptation, catastrophic forgetting oc-
curs when the model forgets previously learned knowledge
while adapting to new domains. To address this, we pro-
pose a second teacher model that learns more generalized
knowledge compared to the primary teacher model, which is
more adapted to the current domain. This helps retain critical
knowledge from past domains while enabling adaptation to
new ones, mitigating the risk of forgetting. To validate our
approach, we conduct an ablation study in cyclic domain set-
tings, where domains are grouped and presented in a cycle.
This setup allows us to compare the effectiveness of various
methods designed to tackle catastrophic forgetting. Table 20-
32 presents the detailed results on the newly proposed bench-
mark CTTA under cyclic domain settings.

The experimental results demonstrate that our method im-
proves performance when domains repeat, indicating that it
retains past knowledge to some extent while adapting to new
domains. Specifically, our approach achieves lower error
rates compared to state-of-the-art methods. In CIFAR10-C,
our method achieves an error rate of 14.89% in Cycle 1 and
14.38% in Cycle 2, showing improvement in error rate as do-
mains are repeated. In contrast, TENT[Wang er al., 2021],
which does not specifically address continual domain adap-
tation, results in higher error rates, with Cycle 1 at 17.47%
and Cycle 2 at 16.64%. While COTTA[Wang et al., 2022]
shows some improvement initially, it does not exhibit reduc-
tion in error rates when domains are repeated. ROID[Mars-
den et al., 2024al, on the other hand, shows limited improve-
ment under cyclic domain settings. Compared to state-of-the-
art methods, our method demonstrates better retention of past
knowledge, leading to more stable performance across cyclic
domains. These results highlight the effectiveness of our ap-
proach in mitigating catastrophic forgetting and adapting to
domain shifts, outperforming existing methods in terms of
reduced error rates.

6.8 Catastrophic Fogetting

The figures illustrate the performance of different CTTA
methods, including SloMo-Fast, on the CIFAR10-C bench-
mark, highlighting challenges like catastrophic forgetting and
the ability to retain long-term knowledge.

In the standard CTTA setting, as shown in 6, the SloMo-
Fast method achieves consistently low error rates, with a
mean error of 15.79%, outperforming CoTTA (16.5%) and



Table 15: Classification error rate (%) for the CIFAR10-to-CIFAR10C online continual test-time adaptation task. Results are evaluated using
the WideResNet-28 model with corruption severity level 5. Prior Correction (PC) is applied to the model output, and Stochastic Restoration
(ST) is applied to the 75 model.

Design Choices Error Rate (%)

PC ST Gaussian  Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Brightness Contrast Elastic Pixelate JPEG Mean

v 22.6 17.8 23.8 13.8 24.7 14.9 12.4 144 143 137 10.3 12.5 17.3 12.8 15.7 16.1
v 22.5 18.5 244 12.8 24.7 13.3 11.7 144 140 13.0 9.6 11.7 17.0 12.5 15.8 15.7

v v 224 18.5 24.7 11.9 24.6 12.2 10.1 127 129 114 7.5 9.9 16.2 11.7 15.9 14.8

Table 16: Classification error rate (%) for the CIFAR100-to-CIFAR100C online continual test-time adaptation task. Results are evaluated
using the ResNeXt-29 model with corruption severity level 5. Prior Correction (PC) is applied to the model output, and Stochastic Restoration
(ST) is applied to the 75 model.

Design Choices Error Rate (%)
PC ST Gaussian ~ Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Brightness Contrast Elastic Pixelate JPEG Mean
v 37.3 32.6 33.7 274 322 27.5 25.1 272 268 293 24.0 24.6 27.0 24.6 274 284
v 37.9 325 33.0 26.7 31.5 27.2 24.7 26.6 264 283 23.4 24.5 26.4 24.5 27.0  28.0
v v 379 325 332 26.5 31.4 26.8 244 265 263 284 23.5 24.6 26.3 24.2 27.1 28.0

Table 17: Classification error rate (%) for the standard CIFAR10-to-CIFAR10C online continual test-time adaptation task. Results are
evaluated on WideResNet-28 with the largest corruption severity level 5. The consistency loss calculated between student and teachers. T
indicates consistency loss calculated between student and teacher 1, 75 indicates consistency loss calculated between student and teacher 2,
T (aug) indicates consistency loss calculated between student and teacher 1 where the input of teacher is augementation of input images.

Design Choices Error Rate (%)
Tl 7, Tl(aug) Gaussian Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Brightness Contrast Elastic Pixelate JPEG Mean
v v 22.7 18.1 242 12.8 25.5 13.5 11.5 150 142 133 9.7 12.2 17.0 13.3 15.7 15.9
v v 22.7 18.7 254 12.9 25.7 14.3 12.3 153 151 134 10.3 133 17.8 134 17.1 16.5
v v 22.6 18.2 24.8 13.2 25.1 14.6 12.2 145 146 13.1 10.2 12.3 17.6 12.9 16.4 16.1

Table 18: Classification error rate (%) for the standard CIFAR100-to-CIFAR100C online continual test-time adaptation task. Results are
evaluated on ResNeXt-29 with the largest corruption severity level 5. The consistency loss calculated between student and teachers. T}
indicates consistency loss calculated between student and teacher 1, 75 indicates consistency loss calculated between student and teacher 2,
T1(aug) indicates consistency loss calculated between student and teacher 1 where the input of teacher is augementation of input images.

Design Choices Error Rate (%)
Tl 7> Tl(aug) Gaussian Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Brightness Contrast Elastic Pixelate JPEG Mean
v v 38.2 329 33.9 26.3 32.0 27.0 247 273 266 289 23.7 24.0 26.5 243 27.1 28.2
v v 38.1 33.1 33.9 27.1 325 27.4 254 277 270 290 242 25.6 27.7 25.6 28.6 289

v v 37.3 32.7 33.0 26.3 31.6 272 247 269 263 283 23.6 24.7 26.7 24.6 27.1 28.1




ROID (16.2%). This demonstrates SloMo-Fast’s superior
adaptability while avoiding performance degradation seen in
other methods.

For mixed domain settings, as shown in 7, SloMo-Fast
maintains the best mean error rate of 28.0%, compared to
CoTTA (32.5%) and ROID (28.0%). This highlights SloMo-
Fast’s ability to handle mixed corruption scenarios effec-
tively.

When evaluating performance in a mixed-after-continual
setting, as in 8, SloMo-Fast achieves the lowest mean error
rate of 21.34%, significantly outperforming ROID (27.37%)
and CoTTA (26.76%), showcasing its resilience to catas-
trophic forgetting.

In the cyclic domain adaptation scenario, as shown in 9,
SloMo-Fast exhibits stable performance, maintaining an aver-
age error rate of 14.63% across repeated domains, compared
to ROID’s 15.63%. This demonstrates SloMo-Fast’s ability
to retain previously learned knowledge without succumbing
to forgetting, a common issue in ROID and CoTTA.

Overall, the results validate SloMo-Fast as a robust so-
Iution for CTTA, capable of preserving long-term domain
knowledge while achieving state-of-the-art performance.



Method | | CIFAR100-C | CIFAR10-C | Imagenet-C
| | Noise Blur Weather Digital Distortion | Avg. Error | Noise Blur Weather Digital Distortion | Avg. Error | Noise Blur Weather Digital Distortion | Avg, Error
TENT Cycle 1 38.28 31.14 32.93 25.04 34.09 32.29 23.66 16.95 15.22 9.07 20.09 17.47 76.35  69.32 57.09 55.31 50.69 61.75
Cycle 2 47.88  37.12 37.93 25.18 38.95 37.41 23.66 16.95 15.22 9.07 20.09 16.64 69.31 65.14 54.19 52.27 47.47 57.68
Avg. 43.08 34.13 3543 25.11 36.52 34.85 23.66 16.95 15.22 9.07 20.09 17.06 72.83  67.23 55.64 53.79 49.08 59.72
COTTA Cycle 1 36.52 2943 30.98 23.56 32.75 30.96 23.16 14.98 15.57 10.01 20.63 17.23 82.38 7691 59.52 56.98 52.82 65.72
Cycle 2 44.67 34.69 35.93 23.97 36.39 34.69 23.15 1554 15.15 9.86 20.06 16.28 78.63  72.06 55.52 53.79 4791 61.58
Avg. 39.60 32.06 33.46 23.77 34.57 33.70 23.15 1526 15.36 9.94 20.35 16.75 80.5 7448 57.52 55.38 50.36 63.65
RoTTA Cycle 1 46.66 33.82 40.83 41.70 41.17 40.84 30.08 18.98 17.00 12.39 23.95 20.64 84.36 76.76 63.04 58.09 55.21 67.49
Cycle 2 4372 29.96 34.31 32.09 36.35 34.70 26.18  16.66 16.02 12.39 21.68 18.23 80.53 7254 60.50 57.35 52.76 64.74
Avg. 45.19  31.89 37.57 36.9 38.76 37.77 28.13  17.82 16.51 12.39 22.81 19.44 8244 74.65 61.77 57.72 53.98 66.11
ROID Cycle 1 33.94 27.58 30.11 24.09 31.20 29.38 22.16 1552 13.55 8.48 18.44 16.08 6523  61.95 51.22 46.46 44.79 53.93
Cycle 2 3243 2831 29.29 23.21 30.55 28.52 22.16 15.52 13.55 8.48 18.44 15.17 61.37 59.62 50.81 45.74 4422 52.35
Avg. 33.18 27.95 29.70 23.65 30.87 28.95 22.16 1552 13.55 8.48 18.44 15.63 63.3  60.78 51.02 46.1 445 53.14
SloMo-Fast Cycle 1 3329 27.02 26.96 24.84 25.79 27.98 20.62 1521 13.09 10.23 14.02 14.89 66.33  60.70 50.20 25.01 43.55 53.22
Cycle 2 3329 27.02 26.96 24.84 25.79 27.18 20.62 1521 13.09 10.23 14.02 14.38 63.58 59.46 49.30 44.88 43.25 52.09
Avg. 3329  27.02 26.96 24.84 25.79 27.58 20.62 15.21 13.09 10.23 14.02 14.63 64.95  60.08 49.75 34.95 43.4 52.66
Table 19: Our Proposed Cyclic TTA results of SloMo-Fast compared with existing methods on CIFAR10-C and CIFAR100-C for different

domain groups. Each subgroup completes a cycle of seeing different test domains twice. (Gaussian, Shot, Impulse): Noise, (Defocus, Glass,
Motion, Zoom): Blur, (Snow, Frost, Fog): Weather, (Brightness, Contrast): Digital, (Elastic, Pixelate, JPEG): . SloMo-Fast achieves the best
performance across both datasets.

Cycle 1 Cycle 2
Method | Subgroup Domain grror (%) | Avg Domain %rror (%) | Avg
gaussian 23.42 gaussian 24.87
Noise shot 21.98 23.66 shot 24.37 25.49
impulse 25.58 impulse 21.74
defocus 11.81 defocus 11.81
glass 29.76 glass 29.76
Blur motion | 1401 | 109 [motion | 1401 | 6%
zoom 12.23 zoom 12.23
TENT Snow 16.34 Snow 14.98
Weather frost 15.94 15.22 frost 15.44 14.99
fog 14.10 fog 14.55
.. brightness 7.91 brightness 7.67
Digital contrast 10.81 9.07 contrast 9.89 8.78
elastic 22.11 elastic 20.55
Distortion pixel 16.22 20.09 pixel 15.54 19.47
jpeg 23.77 jpeg 22.33
Cycle 1 Avg: 17.47% Cycle 2 Avg: 17.14%

Table 20: Detailed Evaluation Results for TENT on CIFAR10-C under Cyclic Domain Settings

Cycle 1 Cycle 2
Method | Subgroup Domain | Error (%) | Avg Domain | Error (%) | Avg
gaussian 38.12 gaussian 47.32
Noise shot 38.45 38.28 shot 48.23 47.88
impulse 38.27 impulse 48.09
defocus 30.87 defocus 37.00
glass 31.19 glass 36.78
Blur motion 30.75 3114 motion 37.39 37.12
zoom 31.27 Zoom 37.50
TENT SNOw 33.05 SNow 36.88
Weather frost 33.21 32.93 frost 36.32 37.93
fog 32.55 fog 38.58
. brightness 25.32 brightness 24.95
Digital contrast 24.76 25.04 contrast 25.41 25.18
elastic 33.72 elastic 39.05
Distortion pixel 34.56 34.09 pixel 39.14 38.95
jpeg 33.98 jpeg 38.66
Cycle 1 Avg: 32.29% Cycle 2 Avg: 37.41%

Table 21: Detailed Evaluation Results for TENT on CIFAR100-C under Cyclic Domain Settings



Cycle 1 Cycle 2
Method | Subgroup Domain %rror (%) | Avg Domain grror (%) | Avg
gaussian 81.38 gaussian 70.78
Noise shot 74.82 76.35 shot 68.50 69.31
impulse 72.86 impulse 68.66
defocus 81.66 defocus 72.56
glass 77.04 glass 72.72
Blur motion 65.18 69.32 motion 62.26 65.14
zoom 53.40 zoom 53.00
TENT SNOW 62.02 SNow 56.38
Weather frost 62.66 57.09 frost 60.58 54.19
fog 46.58 fog 45.62
. . brightness 34.22 brightness 33.20
Digital C(;gntrast 76.40 35.31 cogntrast 71.34 52.27
elastic 52.92 elastic 47.82
Distortion pixel 46.36 50.69 pixel 4422 47.47
jpeg 52.78 jpeg 50.36

Cycle 1 Avg: 61.75%

Cycle 2 Avg: 57.68%

Table 22: Detailed Evaluation Results for TENT on Imagenet-C under Cyclic Domain Settings

Cycle 1 Cycle 2
Method | Subgroup Domain Error (%) | Avg. Domain Error (%) | Avg.
gaussian 36.14 gaussian 4423
Noise shot 36.84 36.52 shot 4498 44.67
impulse 36.57 impulse 4481
defocus 29.12 defocus 34.45
glass 29.55 glass 34.08
Blur motion | 2899 | 22 moton | 3472 |+
zoom 29.36 zoom 34.51
COTTA SNOW 31.25 SNOW 3545
Weather frost 30.84 30.98 frost 35.21 35.93
fog 30.85 fog 37.13
. brightness 23.28 brightness 23.95
Digital contrast 23.84 23.56 contrast 24.09 23.97
elastic 32.48 elastic 36.54
Distortion pixel 32.88 32.75 pixel 36.19 36.39
jpeg 32.89 jpeg 36.44

Cycle 1 Avg: 30.96%

Cycle 2 Avg: 34.69%

Table 23: Detailed Evaluation Results for COTTA on CIFAR100-C under Cyclic Domain Settings




Cycle 1 Cycle 2
Method | Subgroup 5o —Frror (%) | Avg. | Domain | Error (%) | Avg.
gaussian 84.54 gaussian 80.64
Noise shot 81.94 82.38 shot 78.30 78.63
impulse 80.66 impulse 76.96
defocus 86.00 defocus 79.48
glass 83.74 glass 77.06
Blur motion 73.82 7691 motion 70.00 72.06
zoom 64.06 zoom 61.70
COTTA SNOW 65.04 SNow 60.76
Weather frost 61.38 59.52 frost 55.52
fog 47.80 fog 44.42
. brightness 34.64 brightness 34.22
Digital contrast 79.32 56.98 contrast 73.36 5379
elastic 55.72 elastic 50.84
Distortion pixel 48.10 52.82 pixel 42.48 4791
jpeg 54.64 jpeg 50.40

Cycle 1 Avg: 65.72%

Cycle 2 Avg: 61.58%

Table 24: Detailed Evaluation Results for COTTA on Imagenet-C under Cyclic Domain Settings

Cycle 1 Cycle 2
Method | Subgroup Domain érror (%) | Avg Domain Izllrror (%) | Avg
gaussian 23.94 gaussian 20.62
Noise shot 22.41 22.32 shot 21.00 22.16
impulse 20.62 impulse 24.87
defocus 10.52 defocus 10.52
glass 28.20 glass 28.20
Blur motion 12.06 15.52 motion 12.06 15.52
zoom 10.06 zoom 10.06
ROID SNoOw 15.12 Snow 14.01
Weather frost 14.41 13.55 frost 13.79 13.24
fog 12.04 fog 11.92
.. brightness 7.76 brightness 7.37
Digital contrast 9.61 8.48 contrast 9.17 8.27
elastic 21.08 elastic 19.16
Distortion pixel 15.22 18.44 pixel 14.51 17.90
jpeg 20.62 jpeg 20.02

Cycle 1 Avg: 16.08%

Cycle 2 Avg: 15.17%

Table 25: Detailed Evaluation Results for ROID on CIFAR10-C under Cyclic Domain Settings




Cycle 1 Cycle 2
Method | Subgroup Domain %rror (%) | Avg Domain grror (%) | Avg
gaussian 32.34 gaussian 33.67
Noise shot 33.12 32.53 shot 34.58 33.83
impulse 32.12 impulse 33.25
defocus 27.12 defocus 28.44
Blur glass 25.67 glass 27.23
motion 26.22 26.44 motion 28.23 28.31
zoom 26.65 zoom 29.34
ROID SNOW 28.77 Snow 29.29
Weather frost 28.06 30.11 frost 28.77 29.70
fog 33.50 fog 31.03
.. brightness 23.64 brightness 22.46
Digital contrast 24.53 24.09 contrast 23.95 23.21
elastic 32.08 elastic 30.86
Distortion pixel 27.28 31.20 pixel 26.90 30.55
jpeg 34.23 jpeg 33.88

Cycle 1 Avg: 29.38%

Cycle 2 Avg: 28.52%

Table 26: Detailed Evaluation Results for ROID on CIFAR100-C under Cyclic Domain Settings

Cycle 1 Cycle 2
Method | Subgroup Domain | Error (%) | Avg Domain | Error (%) | Avg
gaussian 72.24 gaussian 61.84
Noise shot 61.54 65.23 shot 60.46 61.37
impulse 61.92 impulse 61.80
defocus 72.68 defocus 66.64
Blur glass 67.26 glass 66.02
motion 58.36 61.95 motion 57.02 59.62
Zoom 49.50 zoom 48.82
ROID SNow 52.54 SNOW 51.38
Weather frost 57.96 51.22 frost 57.76 50.81
fog 43.16 fog 43.30
. brightness 33.30 brightness 33.88
Digital contrast 59.62 46.46 contrast 57.60 45.74
elastic 45.32 elastic 44.10
Distortion pixel 42.40 44.779 pixel 42.36 44.22
jpeg 46.64 jpeg 46.20

Cycle 1 Avg: 53.93%

Cycle 2 Avg: 52.35%

Table 27: Detailed Evaluation Results for ROID on Imagenet-C under Cyclic Domain Settings




Cycle 1 Cycle 2
Method | Subgroup Domain | Error (%) | Avg Domain | Error (%) | Avg
gaussian 30.21 gaussian 25.50
Noise shot 25.43 30.08 shot 22.32 26.18
impulse 34.59 impulse 30.72
defocus 13.80 defocus 11.33
glass 36.19 glass 31.81
Blur motion 14.78 18.98 motion 13.49 16.66
zoom 11.13 zoom 10.01
RoTTA Snow 17.81 Snow 16.27
Weather frost 17.68 17.00 frost 15.53 16.02
fog 15.52 fog 13.30
.. brightness 8.06 brightness 8.83
Digital contrast 18.35 12.39 contrast 14.32 12.39
elastic 23.64 elastic 22.15
Distortion pixel 21.65 23.95 pixel 19.46 21.68
jpeg 26.57 jpeg 23.44

Cycle 1 Avg: 20.64%

Cycle 2 Avg: 18.23%

Table 28: Detailed Evaluation Results for RoOTTA on CIFAR10-C under Cyclic Domain Settings

Cycle 1 Cycle 2
Method | Subgroup Domain | Error (%) | Avg Domain | Error (%) | Avg
gaussian 49.48 gaussian 41.89
Noise shot 44.87 46.66 shot 39.18 43.72
impulse 45.62 impulse 41.29
defocus 29.94 defocus 25.95
glass 47.33 glass 40.52
Blur —otion T 3086 | 2% [ motion | 2832 | >
zoom 27.16 zoom 25.07
RoTTA snow 39.00 Snow 32.99
Weather frost 41.40 40.83 frost 33.15 34.31
fog 42.09 fog 36.78
. brightness 28.95 brightness 26.63
Digital contrast 54.44 4170 contrast 37.56 32.09
elastic 40.58 elastic 35.83
Distortion pixel 40.05 41.17 pixel 33.93 36.35
jpeg 42.89 jpeg 39.28

Cycle 1 Avg: 40.84%

Cycle 2 Avg: 34.70%

Table 29: Detailed Evaluation Results for ROTTA on CIFAR100-C under Cyclic Domain Settings




Cycle 1 Cycle 2
Method | Subgroup Domain | Error (%) | Avg Domain | Error (%) | Avg
gaussian 87.98 gaussian 81.94
Noise shot 82.74 84.36 shot 80.28 80.53
impulse 82.36 impulse 79.38
defocus 84.66 defocus 79.40
glass 86.60 glass 81.941
Blur motion 75.60 76.76 motion 71.58 72.54
zoom 60.16 zoom 57.22
RoTTA Snow 67.04 Snow 64.90
Weather frost 67.48 63.04 frost 64.96 60.50
fog 54.60 fog 51.64
.. brightness 34.54 brightness 35.94
Digital contrast 81.64 58.09 contrast 78.76 5735
elastic 55.44 elastic 53.78
Distortion pixel 52.10 55.21 pixel 49.34 52.76
jpeg 58.10 jpeg 55.16
Cycle 1 Avg:67.49% Cycle 2 Avg: 64.74%

Table 30: Detailed Evaluation Results for RoOTTA on Imagenet-C under Cyclic Domain Settings

Cycle 1 Cycle 2
Method Subgroup Domain %rror (%) | Avg Domain %rror (%) | Avg
gaussian 23.89 gaussian 19.96
Noise shot 18.89 23.05 shot 17.60 20.76
impulse 26.38 impulse 24.72
defocus 12.23 defocus 11.47
glass 26.33 glass 24.83
Blur motion | 1350 | 73 motion | 1334 | >
Zoom 10.86 zoom 10.71
SloMo-Fast snow 13.86 Snow 13.39
Weather frost 13.42 13.51 frost 13.26 13.17
fog 13.26 fog 12.85
. brightness 7.79 brightness 8.22
Digital contrast 11.08 9.43 contrast 10.38 9.30
elastic 18.15 elastic 17.91
Distortion pixel 13.21 16.22 pixel 13.04 16.02
jpeg 17.31 jpeg 17.10
Cycle 1 Avg: 15.59% Cycle 2 Avg: 14.87%

Table 31: Detailed Evaluation Results for SloMo-Fast on CIFAR10-C under Cyclic Domain Settings




Cycle 1 Cycle 2
Method Subgroup Domain grror (%) | Avg Domain grror (%) | Avg
gaussian 36.99 gaussian 34.09
Noise shot 3291 35.01 shot 32.26 33.45
impulse 35.14 impulse 34.01
defocus 26.08 defocus 26.03
glass 35.52 glass 34.31
Blur motion 2824 | 288 hotion 2805 | 283
Zoom 25.50 zoom 25.73
SloMo-Fast SNOw 29.73 SNOW 29.02
Weather frost 29.45 30.89 frost 29.15 30.57
fog 33.48 fog 33.53
.. brightness 24.03 brightness 24.47
Digital contrast 25.99 25.01 contrast 25.92 2520
elastic 31.21 elastic 31.54
Distortion pixel 27.54 31.22 pixel 27.71 31.44
jpeg 34.92 jpeg 35.08

Cycle 1 Avg: 30.19%

Cycle 2 Avg: 29.84%

Table 32: Detailed Evaluation Results for SloMo-Fast on CIFAR100-C under Cyclic Domain Settings

Cycle 1 Cycle 2
Method Subgroup Domain | Error (%) | Avg Domain | Error (%) | Avg
gaussian 68.72 gaussian 64.82
Noise shot 65.56 66.33 shot 62.82 63.58
impulse 64.73 impulse 63.09
defocus 68.51 defocus 66.23
glass 66.71 glass 65.77
Blur motion 57.39 60.70 motion 56.28 29.46
zoom 50.19 Zoom 49.57
SloMo-Fast Snow 50.94 Snow 49.47
Weather frost 56.59 50.20 frost 55.90 49.30
fog 43.08 fog 42.52
. brightness 33.61 brightness 33.65
Digital contrast 56.98 25.01 contrast 56.12 HhES
elastic 43.65 elastic 43.05
Distortion pixel 41.21 43.55 pixel 40.93 43.25
jpeg 45.80 jpeg 45.77

Cycle 1 Avg: 53.22%

Cycle 2 Avg: 52.09%

Table 33: Detailed Evaluation Results for SloMo-Fast on Imagenet-C under Cyclic Domain Settings




Cycle 1 Cycle 2
Method Subgroup Domain | Error (%) | Avg Domain | Error (%) | Avg
gaussian 21.65 gaussian 20.34
Noise shot 19.78 20.62 shot 21.12 20.62
impulse 20.43 impulse 20.40
defocus 15.03 defocus 14.34
glass 14.65 glass 15.92
Blur motion 17.07 | " " motion 627 | 22!
zoom 12.41 Zoom 13.90
SloMo-Fast* SNOW 13.72 SNOw 13.10
Weather frost 13.42 13.21 frost 13.23 13.09
fog 12.48 fog 12.58
. brightness 9.33 brightness 9.17
Digital contrast 11.15 10.24 contrast 11.26 10.23
elastic 15.85 elastic 15.64
Distortion pixel 11.56 13.96 pixel 11.98 14.02
jpeg 14.46 jpeg 14.61

Cycle 1 Avg: 14.89%

Cycle 2 Avg: 14.38%

Table 34: Detailed Evaluation Results for SloMo-Fast* on CIFAR10-C under Cyclic Domain Settings

Cycle 1 Cycle 2
Method Subgroup Domain glrror (%) | Avg Domain %rror (%) | Avg
gaussian 34.12 gaussian 34.82
Noise shot 32.54 33.29 shot 31.89 33.51
impulse 33.12 impulse 33.84
defocus 27.01 defocus 27.03
glass 26.97 glass 27.04
Blur motion 26.89 27.02 motion 27.12 27.02
Zoom 27.22 zoom 26.89
SloMo-Fast* SNOW 27.00 SNOw 26.98
Weather frost 26.90 26.96 frost 27.01 26.96
fog 26.98 fog 26.89
.. brightness 2474 brightness 24.41
Digital contrast 25.05 24.84 contrast 25.18 24.84
elastic 25.72 elastic 25.67
Distortion pixel 24.79 25.89 pixel 2497 25.79
jpeg 26.84 jpeg 26.73

Cycle 1 Avg: 27.98%

Cycle 2 Avg: 27.18%

Table 35: Detailed Evaluation Results for SloMo-Fast* on CIFAR100-C under Cyclic Domain Settings
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Figure 6: CTTA Error rates (%) for Source (blue), CoTTA (black), ROID (green), and PA (red) across domains in the CIFAR10-C benchmark.
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Figure 7: Mixed TTA Error rates (%) for Source (blue), CoTTA (black), ROID (green), and PA (red) methods across domains in the CIFAR10-
C benchmark for mixed domains.
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Figure 8: Mixed after Continual TTA Error rates (%) for Tent (blue), CoTTA (black), ROID (green), and PA (red) methods across domains in
the CIFAR10-C benchmark for mixed domains after continual learning.
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Figure 9: Cyclic TTA Error rates (%) for ROID and PA methods across domains with subgroup boundaries (Cycle 2 only). Here, Existing
best ROID is fluctuating and indicates catestrophic forgetting where SloMo-Fast is stable
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